Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.108-108
/
2017
깊은 불확실성이 내재되어 있는 기후변화의 특성을 고려한 의사결정은 강건함(Robustness)의 특성을 지니고 있어야 한다. 강건한(Robust) 의사결정은 광범위한 불확실성의 상황에서 모든 요구사항을 충족시키는 전략을 제시한다. 이러한 강건함의 개념은 저수지운영 규칙 산정에 필요한 최적화 과정에도 적용될 수 있는데, 이를 로버스트(Robust) 최적화 과정이라고 한다. 로버스트 최적화 과정은 기존 최적화과정이 현재의 자료를 바탕으로 최적의 해를 찾기 때문에 미래 입력자료의 불확실성을 반영하지 못하는 한계를 극복하기 위하여 등장하였다. 로버스트 최적화 과정은 크게 두 가지 방법으로 나눌 수 있는데, 확률적 로버스트 최적화 방법과 비확률적 로버스트 최적화 방법이다. 확률적 로버스트 최적화 과정은 전통적인 최적화 과정과 동일하게 불확실 변수의 확률분포를 가정하지만, 비확률적 로버스트 최적화 과정은 불확실 변수의 확률분포를 가정하지 않는다. 본 연구는 최근 수자원의 부족을 겪었던 보령댐의 보다 안정적인 이수기 운영방안 산정을 위해 로버스트 최적화 과정을 적용하였다. 먼저 전통적인 최적화 방법을 적용하여 운영방안을 도출한 뒤 기후변화 상황에서의 취약성, 신뢰성, 지속가능성 그리고 회복탄력성 등을 검토하였다. 다음으로 이에 대한 대안으로 로버스트 최적화 방법으로 운영방안을 산출하였으며 이를 기존의 최적화방법과 여러 기준으로 비교하여 그 타당성을 검토하였다. 또한 두 가지 로버스트 최적화 방법을 비교하여 각 과정의 장단점에 대해 논의 하였으며, 어떤 최적화 과정이 댐 운영방안 산정에 있어 보다 합리적이고 타당한지 비교하였다. 본 연구의 결과를 통해, 기후변화의 영향 하에서 보다 안정적인 수자원 관리 방안을 제안할 수 있었다.
Yoon, Hae Na;Kim, Gi Joo;Seo, Seung Beom;Kim, Young-Oh
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.114-114
/
2018
과거 수십년간 댐의 운영방법은 과거 관측 유입량 자료를 바탕으로 결정되었지만, 미래 기후변화의 불확실성을 고려하면 기존 운영방법이 더 이상 유효하지 않을 수 있다. 따라서, 이에 대응하여 수자원을 적절히 운용하기 위해서는 기후변화의 불확실성을 고려한 댐의 운영방법에 대한 연구가 필요하다. 본 연구는 예측 유입량의 불확실성을 고려하기 위하여 로버스트(Robust) 의사결정 방법을 댐 운영 최적화에 접목한 다목적 로버스트 최적화(Multi-Objective Robust Optimization) 방법을 제안한다. 이는 기존의 다목적 로버스트 의사결정이론(MORDM, Multi Objective Robust Decision Making)과 로버스트 최적화이론(Robust Optimization)을 결합한 의사결정 방법이다. 로버스트 최적화의 목적함수는 로버스트 항(Robust Term)을 신뢰도, 심각도, 그리고 회복도 등의 여러 관점으로 구성할 수 있으며, 이는 다목적 최적화의 일종으로 볼 수 있다. 본 연구는 신뢰도와 심각도 관점으로 로버스트 항을 적절히 구성하고 그 가중치들을 조절하며, 그에 따라 기후변화의 상황에서 댐 운영의 수행결과가 어떻게 변하는지 의사결정자들이 파악할 수 있도록 가시화한다. 그리고 동시에, 목표하는 댐 운영의 안정성이 다양한 미래 기후변화 시나리오 상에서 유지되도록 하는 로버스트 항과 각 항의 가중치들을 결정하는 방법을 제시한다. 이를 통해 의사결정자는 여러 측면에서 안정적인 다목적 로버스트 최적화의 해를 찾아갈 수 있다. 댐 운영을 위한 로버스트 최적화를 진행하기 위해서 본 연구는 Robust-SDP(Stochastic Dynammic Programming)을 수행하였으며, 대상유역인 보령댐이 이수기동안 인근지역의 수요량만큼 물을 충분히 공급함을 목적으로 로버스트 최적화를 진행하였다. 아울러, 저수지 용량이 로버스트 최적화에 미치는 영향을 분석하기 위해서 남강댐에 동일한 최적화 방법을 적용하고 이를 비교하였다.
In this paper, we propose the double robust estimators which are the solutions of the double robust estimating equations to analyze and treat the outliers in the stock market data in Korea including the IMF period. The feasibility study shows that the proposed estimators work quitely better than the least squares estimators and the conventional robust estimators.
본 논문에서는 로버스트 파라미터(robust parameter) 설계에서 다특성(multiple quality characteristics)인 경우 제어인자의 동시 최적화 조건을 찾는 방안으로 인자분석(factor analysis)에 의한 최적화 방안을 제시한다. 또한 하나의 사례를 들어 제안한 방안과 기존의 방안을 비교 연구하였다.
Communications for Statistical Applications and Methods
/
v.18
no.4
/
pp.517-525
/
2011
This paper shows the performance evaluation of a robust estimator based on the GARCH model. We first introduce the method of a robust estimate in the GARCH model and the method of an outlier detection in the GARCH model. The results of the real internet traffic data show the out-performance of the robust estimator over the outlier detection method in the GARCH model. In addition, the method of the robust estimate is less complex than the method of the outlier detection method in the GARCH model.
인공신경망 모형을 적합시키는데 사용하는 역전파 알고리즘을 로버스트하게 만드는 새로운 오차함수를 제안했으며, 새 방법의 성능을 확인하기 위해 Liano가 제안한 방법에 따라 모의실험을 수행했다. 실험결과 새 방법은 LMS방법만큼 안정적이었으며, Liano의 LMLS방법보다 더 로버스트했다. 또 실제 사례를 분석함으로써 이 방법이 의미있는 방법임을 보였다. 새 방법은 특히 오차가 없거나 작은 오차를 갖는 표본에 대해서도 좋은 성질을 가짐으로서 대형오차의 유무에 관계없이 항상 사용할 수 있는 방법으로 판명되었다.
Kim, Ji-Hye;Hong, Tae-Gyeong;Choe, Jin-Sik;Namkung, Pyung
Proceedings of the Korean Statistical Society Conference
/
2003.10a
/
pp.117-122
/
2003
개방형 모집단에 대한 Mark-Recapture방법은 일반적으로 Jolly-Seber방법이 사용된다. 이 방법은 각 표본에서 모든 동물들에 대한 포획될 확률은 동일하다는 가정을 갖는다. 개방형 모집단에 대한 Mark-Recapture방법을 소개하고 폐쇄형 모집단에서 갖는 문제를 해결하기 위한 개방형 모집단의 로버스트 설계를 이용하려다. Pollock과 Kendall의 Jolly-Seber 모수로부터 유도된 모집단의 성장율 추정에 대하여 SAS와 POPAN의 결과를 비교하였다.
Journal of the Korean Data and Information Science Society
/
v.11
no.1
/
pp.1-18
/
2000
In this paper, we study several parameter estimation methods used for autoregressive processes and compare them in view of forecasting. The least square estimation, least absolute deviation estimation, robust estimation are compared through Monte Carlo simulations.
Seokhyeon Kim;Sinae Kim;Hyunji Lee;Jihye Kwak;Jihye Kim;Moon Seong Kang
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.421-421
/
2023
하구담수호는 하천의 출구점이 해양과 만나는 곳에 방조제를 건설하고 이를 통해 형성되는 인공호수이다. 출구점에 위치한 지리적 특성은 많은 수자원을 확보할 수 있지만 유역에서 발생하는 모든 유입량 및 오염물질이 유입되어 홍수위험 및 수질악화가 문제점으로 제시되고 있다. 담수호의 관리수위는 배수갑문 운영에 기초가 되는 수위로 용수공급, 홍수위험도를 고려하여 산정한다. 하지만 기후변화로 인해 가뭄, 홍수의 위험성이 커지고 있으며, 이를 고려하여 관리수위의 산정이 필요하다. 로버스트 의사결정 기법은 기후변화의 불확실성 하에서의 정책 결정을 위해 제시된 개념으로 불확실한 미래상황에 대하여 최적이 아닌 여러상황의 준수한 결과를 보이는 방법을 선정해 예상치 못한 상황에도 대비할 수 있는 것을 목적으로 한다. 본 연구에서는 담수호의 관리수위 산정을 위해 로버스트 의사결정 기법을 적용하였다. 관리수위 산정을 위해 미래 기후변화 시나리오는 CanESM5 GCM의 SSP1, 2, 3, 5 시나리오를 이용하였으며 담수호 관리수위는 기존 관리수위를 포함한 5개의 관리수위를 모의하였다. 각 시나리오에 따른 유입량, 호소수위 및 호소수질 변화를 모의하기위해 유역모형 HSPF와 호소모형인 EFDC-WASP 모형을 연계하여 활용하였다. 로버스트 의사결정 기법에 성능인자로는 신뢰도기반 이수, 치수, 수질지표를 활용하였으며, 결정인자으로 후회도를 활용하였다. 후회도는 로버스트의사 결정에서 널리 쓰이는 결정인자로 가장 좋은 성능인자와 그 대안의 성능인자의 차이를 의미한다. 최종적으로 최소의 최대 후회도를 갖는 시나리오를 1순위로 선정하였다.
Communications for Statistical Applications and Methods
/
v.4
no.2
/
pp.327-332
/
1997
다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.