• Title/Summary/Keyword: 렌즈변환

Search Result 125, Processing Time 0.025 seconds

The Study about Measuring Method in Radius of Eyeglasses Lens Curvature by using Keratometer (각막곡률계를 이용한 안경렌즈 곡률반경 측정방법에 관한 연구)

  • Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Perpose: The aim of this study is to investigate the measuring method in radius of eyeglasses lens curvature by using keratometer in noncontact method. Methods: A trial lens for vision test in diopter range from -9.00 D to -11.50 D were attached in front part of keratometer, after that we set eyeglasses lens at the place where eyeglasses lens is apart about 25 cm from front position of keratometer. We measured the radius of curvature from observation of clear mire image while the position of eyeglasses lens is changed in a small quantity. After that, we made some formulas for compensation of radius of curvature by using spherometer. Results: The radius of curvature was successfully measured by keratometer with trial lens in front part of it. The measured radius of curvature was changed to compensation value using spherometer data, and the 5 kind of linear equation to make compensation value was made. Any kind of lenses measured by using keratometer that trial lens was attached in front part of it, after that it was confirmed that the result of calculation from line equation is exact in error ratio below 3.5%. Conclusions: It was confirmed that radius of eyeglasses lens curvature can be measured by using keratometer by noncontact method, and the accuracy is higher than "lens measure".

Development and Experiment of a Linear Array Acoustic Lens with 31 Microphones (마이크로폰 31개로 이루어진 선형배열 음향렌즈의 구성과 실험)

  • Hyun, Seok-Bong;Min, Dong-Hyun;Kim, Su-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.15-23
    • /
    • 1994
  • We developed an electronic lens for acoustic imaging systems, which is linear array with 31 microphones equally spaced with distance 34mm. Resonant frequency fo receiver circuit coupled to microphone is 20 kHz. We arranged 16 microphones horizontally and 15 microphones vertically, so that the array allows us to obtain a 2 dimensional angle of source, and to track the motion of source in real time. Due to the problem of aliasing in discrete Fourier Transfrom, the maximum observable angle of the lens is limited to 15${\circ}$. We also employed quadrature phase detection scheme to adjust the focus. We have tested the acoustic lens with a personal computer in an anechoic room and obtained the results agreed with the acoustic imaging theory.

  • PDF

3D Visualization of Auto Pattern Maker Data for Eyeglass Lens Machining (안경렌즈 가공을 위한 취형기 데이터의 3D 시각화)

  • Kim, Dae-Yun;Kim, Sul-Ho;Kim, Gye-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1459-1460
    • /
    • 2015
  • 안경을 제작하기 위하여 안경테 혹은 렌즈의 사이즈를 측정하는 기계를 취형기라 하며, 측정된 데이터를 사용하여 렌즈를 절삭하는 기계를 옥습기라 한다. 본 논문에서는 취형기를 통해 획득한 데이터를 3D 시각화 하는 방법에 대하여 서술한다. 취형기의 탐침자에서 획득된 데이터는 1024개, 즉 데이터당 약 $0.352^{\circ}$에 해당하는 각도로 획득한 데이터로 구성되며, 각 데이터는 취형기 중심에서 경계까지의 거리와 렌즈 혹은 안경테의 높이 데이터를 포함한다. 해당 데이터는 취형기에서 얻은 원통좌표계 형식의 원시 데이터 형태에서 OpenGL에서 사용하기 좋은 3차원 데이터 형식으로 나타낼 수 있도록 재가공하여 X, Y, Z 축 기반의 3차원 직교좌표계 형식으로 변환한다. 그 후, OpenGL을 사용하여 3D로 시각화하였다. 해당 데이터를 회전할 수 있도록 하기 위하여 쿼터니언 기반의 ArcBall을 사용하여 회전 가능하게 하였으며, 3D 시각화 된 결과를 확대/축소할 수 있게 하였다. 디스플레이에서 실제와 같은 크기로 출력하기 위하여 DPI를 활용한 축척 계산법을 사용하였고, 출력결과의 더 나은 시각화를 위하여 평균보간법을 사용하였다.

분수차 퓨리에 변환을 이용한 광 필터와 신경회로망

  • 이수영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.117-120
    • /
    • 1995
  • 분수차 퓨리에(Fouier) 변환은 퓨리에 면환을 일반화시킨 것으로, 위치와 공간주파수의 복합적인 표현을 주나, 한 개의 렌즈를 광학적 구현이 역시 가능하다. 광신호처리에서 많이 사용되는 정합 필터를 구성하는 퓨리에 면환을 각각 분수차로 일반화시킴으로서, 위치 필터와 공간주파수 필터의 특성이 복합된 새로운 필터를 구성할 수 있게 된다. 이 필터 구조는 신경회로망의 학습으로 대치된다. 최대경사법과 오차역전파(error back-propagation)에 기초한 학습 법칙이 유도되고, 컴퓨터 시뮬레이션 결과가 제시된다.

  • PDF

Stress analysis of the CR lens using the chrome conversion (Chrome 변환을 이용한 CR 렌즈의 미세응력 시각화)

  • Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • The polariscope to measure the microscopic stress in CR lens consists of light source polarizer, model, polarizer, CCD, computer, chrome conversion orderly and the principal-stressed difference, (${\sigma}_1-{\sigma}_2$) and the fringe order n were measured by analyzing two components of light wave $E_1$ and $E_2$ following each polarizer's steps. The two-dimensional model could be determined from the fact that the optical axes of sample concide with the principal-stress directions. The bi-refringence acted to a light wave and the phase retardation were in proportion to the principal-stressed difference(${\sigma}_1-{\sigma}_2$) and the intensity of final light wave was proportioned to $sin2({\Delta}/2)$ and when ${\Delta}/2=n{\pi}$ (n=0, 1, 2, ${\ldots}$) the extinction occurs. Photoelastic's image by microscopic stress could analyzed using chrome conversion, and the image showed clearly.

  • PDF

Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination (3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환)

  • Ser, Jang-Il;Shin, Seung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • We have studied depth conversion of a reconstructed image by means of recombination of the elemental images in the integral imaging system for 3D display. With the recombination, depth conversion to the pseudoscopic, the orthoscopic, the real or the virtual as well as to arbitrary depth without any distortion is possible under proper conditions. The conditions on the recombinations for the depth conversion are theoretically derived. The reconstructed images using the converted elemental images are presented.

Simulation of Luminance and Uniformity of LGP According to the Laser Scattering Pattern (렌즈형 광섬유를 이용하여 펄스형 반도체 레이저 Beam Shaping 및 증폭 기술 연구)

  • Kwon, Oh-Jang;Kim, Ryun-Kyung;Shim, Young-Bo;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.254-258
    • /
    • 2010
  • We investigate an optical technique for beam shaping and optical amplification of a pulsed laser diode without variation of its original properties, such as repetition rate and pulse duration. The horizontal and longitudinal sizes of the pulsed laser diode are 300 and $2{\mu}m$, respectively, and its output power is $1.1mW/cm^2$. The multimodal and elliptical pulse shape of the laser diode is converted to the single-modal and Gaussian pulse shape by using a lensed optical fiber. Since the single-modal lensed fiber coupling from the multimodal pulsed laser diode degrades the output power severely, the output power of the pulsed laser diode is dramatically enhanced by using an optical amplification method based on master oscillated power amplification (MOPA). The pulse qualities of the laser diode are not changed after amplifying the pulse power and the output power was finally measured to be $29mW/cm^2$.

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.