• 제목/요약/키워드: 레졸루션

검색결과 13건 처리시간 0.015초

CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution (Quad Tree Based 2D Smoke Super-resolution with CNN)

  • 홍병선;박지혁;최명진;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.105-113
    • /
    • 2019
  • 물리 기반 유체 시뮬레이션은 고해상도 연산을 위해 많은 시간이 필요하다. 이 문제를 해결하기 위해 저해상도 유체 시뮬레이션의 한계를 딥 러닝으로 보완하는 연구들이 있으며, 그중에서는 저해상도의 시뮬레이션 데이터를 고해상도로 변환해주는 Super-resolution 분야가 있다. 하지만 기존 기법들은 전체 데이터 공간에서 밀도 데이터가 없는 부분까지 연산하므로 전체 시뮬레이션 속도 면에서 효율성이 떨어지며, 입력 해상도가 큰 경우에는 GPU 메모리가 부족해 연산할 수 없는 경우가 발생할 수 있다. 본 연구에서는 공간 분할 법 중 하나인 쿼드 트리를 활용하여 시뮬레이션 공간을 분할 및 분류하여 Super-resolution 하는 기법을 제안한다. 본 기법은 필요 공간만 Super-resolution 하므로 전체 시뮬레이션 가속화가 가능하고, 입력 데이터를 분할 연산하므로 GPU 메모리 문제를 해결할 수 있게 된다.

사물인터넷 디바이스를 위한 DNS 네임 자동설정의 설계 및 구현 (Design and Implementation of DNS Name Autoconfiguration for Internet of Things Devices)

  • 이세준;정재훈
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1441-1451
    • /
    • 2015
  • 최근 가장 주목받고 있는 연구 분야 중 하나인 사물인터넷(Internet of Things, IoT)은 네트워크에 연결된 매우 많은 디바이스를 통해 사용자에게 다양한 서비스를 제공하는 것을 목표로 한다. IoT 환경에서 IoT 디바이스는 매우 많은 개수가 사용되는데 각 IoT 디바이스에 대한 DNS(Domain Name System) 네임을 일일이 수동으로 설정하는 것은 비효율적이다. 따라서 본 논문에서는 IPv6 기반의 IoT 환경에서 IoT 디바이스의 DNS 네임을 자동으로 생성하고 관리하는 DNS Name Autoconfiguration(DNSNA)이라는 기법을 제안한다. DNS 네임을 생성 및 등록하는 과정에서 Internet Engineering Task Force(IETF)에서 재정된 표준 프로토콜을 이용한다. 본 기법은 유니캐스트로 DNS 서버를 통해 IoT 디바이스의 DNS 네임을 IPv6 주소로 레졸루션(Resolution)하기 때문에 멀티링크 네트워크 환경에서는 기존의 멀티캐스트 기반의 mDNS(Multicast DNS) 기법보다 트래픽을 적게 발생시킨다. 따라서 본 기법은 멀티홉으로 구성된 IoT 네트워크에서 mDNS 보다 더 적합하다. 본 논문은 제안한 기법의 디자인과 스마트 홈과 스마트 로드에서의 서비스 시나리오를 설명한다. 또한 본 논문은 스마트 그리드 환경에서 구현 및 테스트에 대하여 설명한다.

선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석 (Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm)

  • 김대섭;윤인하;이우석;백금문
    • 대한방사선치료학회지
    • /
    • 제24권2호
    • /
    • pp.137-147
    • /
    • 2012
  • 목 적: 알고리즘에 따른 치료계획의 영향을 분석하고 실제 치료계획을 수립할 때 고려사항을 적용하고, 나아가 최선의 치료계획을 수립하는 프로토콜을 제시하고자 한다. 대상 및 방법: 치료계획 시스템은 이클립스 10.0 (Eclipse 10.0, Varian, USA)이다. 선량계산의 알고리즘은 PBC (Pencil Beam Convolution)와 AAA (Anisotropic Analytical Algorithm)을 각각 적용하였고, 세기 조절 방사선 치료(IMRT)를 위한 최적화(Optimization) 알고리즘은 DVO (Dose Volume Optimizer 10.0.28), VMAT을 위한 최적화 알고리즘은 PRO II (Progressive Resolution Optimizer V 8.9.17)와 PRO III (Progressive Resolution Optimizer V 10.0.28)을 사용하였다. 실험을 위한 팬텀은 치료계획시스템에서 가상으로 만들었으며, $30{\times}30{\times}30$ cm의 규격에 밀도가 균일한 것(HU: 0)과 중간에 공기(HU: -1,000)로 가정되는 물질이 삽입한 된 비균질 팬텀으로 설정하였다. 실험은 먼저 팬텀(Phantom) 계획을 실시하여 일반적인 치료계획의 특징을 분석하고 그 내용을 토대로 실제 임상적용 할 치료계획을 수립하였다. 결 과: 균일한 밀도 팬텀에서 6 MV, 10 cm PDD (Percentage Depth Dose)는 PBC와 AAA는 모두 65.2%로 유사한 값을 나타냈지만, 비균질 팬텀에서 PDD는 저밀도 물질을 만나기 전까진 유사한 PDD 값을 보이다가 공기 영역에서 다른 선량곡선을 보여주고, 투과한 후에는 PDD 10 cm은 각각 75%, 73%이었다. 동일한 MU의 3차원 치료계획에서 보면, AAA 치료계획이 폐가 포함된 영역에서 저 선량으로 나타났다. 기관지와 폐의 영역이 포함된 경추 치료 환자의 2차원 대향 2문조사 치료계획을 15 MV을 이용하여 설계하였을 때, Conformity Index (ICRU 62)는 PBC 계산에서 0.95, AAA에서 0.93이었다. IMRT 치료계획은 DVO에서 보여지는 DVH가 선량계산 DVH와 동일하게 나타났다. 하지만 AAA으로 선량계산을 하였을 때는 DVO에서 조건을 만족하는 결과가 선량계산에서는 선량부족으로 나타났다. PRO II을 이용한 VMAT 치료계획은 최적화 할 때는 만족스런 결과를 얻었지만, 선량계산을 실시하였을 때는 저밀도 영역이 선량 부족으로 나타났다. 하지만 PRO III에서 같은 조건을 1회 더 최적화함으로써 최적화 결과와 선량계산 결과가 유사하였다. 결 론: 본 연구에서는 선량계산 알고리즘의 옳고 그름을 판단하지 않는다. 알고리즘이 나타내는 선량 분포의 특성을 분석하고, 특히 최적화가 필요한 IMRT나 VMAT 치료계획에서 최적화 알고리즘의 요인도 치료계획을 수립할 때 고려함으로써 최적의 치료계획을 위한 방법을 제시하고자 한다.

  • PDF