• 제목/요약/키워드: 레일클램프

검색결과 26건 처리시간 0.031초

과부화 방지를 위한 쐐기형 레일클램프의 지지대 위치 설정 (Determining the Position of Supporter to prevent a Overload applied to the Wedge Type Rail Clamp)

  • 한동섭;한근조;이성욱
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.294-297
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along a rail from the wind blast as well as to locate a container crane in the set position during an operating mode. In this study we conduct the research for determining the proper position of supporter to prevent the overload applied to the rail clamp with respect to the wedge angle in the wedge type rail clamp. The friction force between the jaw pad and the rail to prevent that the crane slips along a rail, when the wind blows, is generated fly the rail-directional wind load. Accordingly the proper position of the supporter to prevent the overload is determined fly analyzing the forces applied to the rail clamp in the wedge working stage. In order to analyze the effect of the wedge angle on the position of supporter, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adapted as the design parameter, and the wind speed of 40m/s was adapted as the design wind speed criteria.

  • PDF

설계 풍속 상향 조정에 따른 Quay crane용 제용량 쐐기형 레일 클램프 설계 (Design of the Various Capacity Wedge-type Rail Clamp for a Quay crane According to the Design Wind Speed Criteria Change)

  • 이정명;한근조;심재준;한동섭;이성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1626-1629
    • /
    • 2005
  • Recently many countries have concentrated their effort on the port automation, in order to be the Hub-port, that the Ultra Large Container Ship could come alongside the Quay, in their region. As the magnitude of the container ship increase, that of the Quay crane increases from 50ton-class to 61ton-class more and more. The wind speed criteria to design the structures used in the port was upgraded from 20m/s to 40m/s due to change of the weather condition. Our laboratory could have the ability to design the wedge type rail clamp for 50ton-class Quay crane in 30m/s wind speed. Accordingly we analyzed the load condition of the Quay crane about 40m/s wind speed upgraded from 20m/s and designed the wedge type rail clamp for 50ton and 61ton-class Quay crane.

  • PDF

쐐기형 Rail Clamp의 하중분석 (Load analysis of Wedge type Rail Clamp)

  • 한근조;안찬우;김태형;심재준;환동섭;이호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we design a wedge type rail clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp. it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a rail clamp with variable capacity. Therefore, this paper suggest a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp.

  • PDF

컨테이너 크레인용 쐐기형 레일 클램프의 쐐기각에 대한연구 (Study on the Wedge Angle of Wedge Type Rail Clamp for Container Crane)

  • 한근조;이호;심재준;한동섭;안찬우;전영환
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.119-126
    • /
    • 2004
  • In this paper, we design a wedge type rail clamp which can protect container crane from a sudden strong blast with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a wedge type rail clamp for parking devices of port cargo working system with variable capacity. Therefore, this paper suggests a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp

메타모델을 이용한 크레인 부품 조의 구조설계 (Structural Design of a Container Crane Part-Jaw, Using Metamodels)

  • 송병철;방일권;한동섭;한근조;이권희
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF