• 제목/요약/키워드: 레이저 어블레이션 가공변수

검색결과 3건 처리시간 0.018초

레이져를 이용한 3차원 형상가공에 관한 연구 (Laser application in 3-D micromachining)

  • 윤경구;이성국;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 1995
  • This paper presents the feasibility of laser ablation process in 3-D micro machining of MEMS (micro Electro Mechanical System)parts. The micro machining characteristics of polymer(Energy fluence, pulse repetition rate, number of pulse, ablation rate)are investigated and 3-D micro machined samples are demonstrated.

  • PDF

레이저 어블레이션 기반 가공 및 계측에서 공정변수의 영향 (Effects of Process Parameters on Laser Ablation Based Machining and Measurements)

  • 정성호;이석희
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1359-1365
    • /
    • 2011
  • The changes of ablation characteristics with respect to laser parameters and material parameters during pulsed laser ablation of solids were discussed with experimental results. Although laser wavelength, laser pulse width, and laser pulse energy are the primary factors to be considered, it is shown that other parameters such as laser spot size and material properties also critically influence on the ablation results. It is further demonstrated that the microstructural characteristics of the target can lead to completely different ablation rate and surface morphology.

엑사이머 레이저 어블레이션 가공에서의 빔변수의 영향 (Effects of Beam Parameters on Excimer Laser Ablation)

  • 방세윤
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.38-46
    • /
    • 2005
  • In laser machining such as drilling with $CO_2$ or Nd:YAG laser, and etching or ablation with Excimer laser, one of the most important parameters affecting the machining is known to be beam characteristics. In this paper a numerical study is performed to investigate the effects of beam parameters, especially in the process of excimer laser ablation of polymers. Results of different beam conditions reveal that if the ablated depth is small compared to beam size the simple photochemical etching model is suitable to predict the etched shape, and that the importance of precise alignment becomes large as beam quality factor becomes larger.