• Title/Summary/Keyword: 레이저 속도계

Search Result 101, Processing Time 0.028 seconds

An Experimental Study of Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 실험적 연구)

  • Jung, Ji-Won;Cho, Hyung-Hee;Choi, Myung-Ryul;Seong, Pyoung-Yong;Lee, Kyoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1789-1794
    • /
    • 2004
  • The present study investigates flow characteristics in an optical disc drive. Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in the personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity components and velocity spectrum are obtained using the laser Doppler anemometry (LDA). The results show that the front holes reduce now-induced noise and the position of pickup body affects flow near the window. In addition, il is possible for cooling of heat sources in an optical disc drive through measuring the flow fields under the tray.

  • PDF

Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling (밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구)

  • Kim, Seog-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

A Study on Turbulent Boundary Layer around a Two-Dimensional Hydrofoil using LDV System (레이저 유속계를 이용한 2차원날개 단면 주위의 난류경계층 연구)

  • J.W. Ahn;J.T. Lee;K.S. Kim;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.146-158
    • /
    • 1991
  • The flow around a two-dimensional foil section Is measured by a LDV(Laser Doppler Velocimetry) system which is capable of measuring the datailed flow field without interfering the original flow field. A 2-color 3-beam LDV system, which is capable of mea,;tiring 2 velocity components simultaneously and uses 2W Ar-Ion laser source, is used to measure the flow field around an NACA0012 foil section. The measured flow velocities are analysed iii order to study the boundary layer characteristics, flow separation and the detail structure of the flow near the trailing edge of the foil. The boundary layer characteristics are compared with the results by the head's momentum integral method. For the case of small angle of attack at relatively higher Reynolds number, both results show good agreements. The measured data of the velocity field around an NACA0012 foil section would be valuable data to validate the CFD(Computational Fluid Dynamic) calculation results. The developed experimental technique to evaluate the characteristics of two-dimensional foil sections is essential tool to develope new blade sections which have good lift characteristics and better cavitation performances.

  • PDF

A study on the characteristics of gas flow in inlet port of 2 cycle engine (2사이클 기관 흡기 포오트의 가스 유동 특성에 관한 연구)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.725-730
    • /
    • 1987
  • An experimental study of the air flow through inlet pipe of reciprocating two-cycle engine was investigated under motored condition. Measurements of the two components of velocity, velocity fluctuation, and the other behavior of inlet flow have been obtained by laser Doppler anemometer system. The research engine comprised the cylinder head of a two-cycle engine which mounted on optical spacer with measuring window and glass inlet entry for laser anemometer measurement. A dual beam laser Doppler anemometer was used with conventional forward scattered method and comprised argon-ion laser, frequency shifter with Bragg cell module, and the signal processor. Measurements of mean velocity fluctuation of inlet flow for different engine speeds, measuring positions, and the changes in cylinder volume are investigated. The results presented show that the changes in engine speed is shown to be strongly influenced on the mean velocity of inlet air. The effect of measuring position and cylinder volume on the inlet velocity was also investigated for the inlet port entry and is shown to be small compared to the engine speed.

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.

Weldability of STS316L for LNG Carrier by Fiber Laser (파이버 레이저를 이용한 LNG선용 STS316L의 용접특성)

  • Kim, Jong-Do;Lee, Jae-Beom;Lee, Chang-Je;Song, Moo-Keun;Nam, Gi-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1061-1068
    • /
    • 2012
  • These days, world wide interest about global warming and environmental pollution and exhausting fossil fuel which have been main energy source in all around the world. So many country have tried to find out the solution by investing new & renewable and clean energy. Therefore LNG have been widely used as a substitution of fossil fuel and clean energy that emits less pollutant like SOx, NOx. Therefore LNG consumption has been quickly raised and LNG carriers have been getting larger for decades. In this study, high power fiber laser was used for welding of stainless steel for LNG carrier to increase its productivity. Used material was STS316L which has low carbon less than 0.03% and its thickness was 8 mm. We carried out bead, lap and butt welding by using the fiber laser which has maximum power up to 5kW. As a result, we could find out that lap and butt joint was possible at welding speed of 2.0m/min and 3.0m/min respectively.

A study on the hard surfacing Characteristics of STS420J2 by using Diode laser (Diode laser를 이용한 STS420J2의 표면경화 특성에 관한 연구)

  • Lee, Tae-Yang;Lim, Byung-Chul;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5460-5466
    • /
    • 2014
  • In this study, mainly for kitchen knives and small swords, cutlery, etc. STS420J2 used material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of STS420J2 local area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser (오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교)

  • 유영태;오용석;노경보;임기건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.