• Title/Summary/Keyword: 레이저 산란/감쇠법

Search Result 5, Processing Time 0.024 seconds

Oil Thickness Measurement by Light Absorption Analysis (흡광 광도 분석법을 이용한 기름의 두께 측정 연구)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.263-267
    • /
    • 2013
  • In this research, a novel optical measuring methodology for the measurement of oil thickness in seawater is suggested by evaluating the light absorption which is occurred in the process of penetrating through oil layer on seawater. Laser having monochromatic wave is used as a light source and photodiode which can convert the intensity of the light into an electrical signal is applied to measure the intensity of the penetrating light through the oil-water mixtures. In the experiment, bunker C and lubricating oil are used, and three different lasers having different wavelengths are applied and compared for the selection of an optimal light source. As a result, it is observed that in the case of blue laser, the intensity of the light on the optical sensor decreases with an increase in the oil thickness. Through this relation, both the presence of oil and the thickness of oil can be determined.

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF

Relative quantitative evaluation of mechanical damage layer by X-ray diffuse scattering in silicon wafer surface (실리콘 웨이퍼 표면에서 X-선 산만산란에 의한 기계적 손상층의 상대 정량 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.581-586
    • /
    • 1998
  • We investigated the effect of mechanical back side damage in Czochralski grown silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductivity decay method, degree of X-ray diffuse scattering, X-ray section topography, and wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the magnitude of diffuse scattering and X-ray excess intensity increased proportionally, and it was at Grade 1:Grade 2:Grade 3=1:7:18.4 that the normalized relative quantization ratio of excess intensity in damaged wafer was calculated, which are normalized to the excess intensity from sample Grade 1.

  • PDF

Spray Visualization Using Laser Diagnostics (레이저 계측법을 이용한 분무 가시화)

  • Yoon Youngbin;Koh Hyeonseok;Kim Dongjun;Khil Taeock
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.3-13
    • /
    • 2005
  • The optical patterantor provides the high resolution and quantitative information of the spray. Fuel distribution and Sauter Mean Diameter (SMD) can be measured from fluorescence and Mie-scat-tering images. To correct the attenuation of the laser beam and signal in dense spray region, the method to find the geometric mean of the signal intensities obtained from two cameras was evaluated and verified in a solid-cone spray. In high pressure environment, the increased number density of the droplets cause multiple scattering. The optical patternation technique using a laser beam instead of a laser sheet was applied to minimize the multiple scattering problem. The pattern of a coaxial spray was changed from hollow-cone to solid-cone shape, and the spray angle was reduced as the ambient pressure increased from 0.1 to 4.0 MPa.

  • PDF