• Title/Summary/Keyword: 레이저 마이크로머시닝

Search Result 17, Processing Time 0.02 seconds

Study on the integration of a micro lens on a 2-DOF in-plane positioning actuator (2-자유도 정밀구동기와 마이크로렌즈의 집적화에 관한 연구)

  • 김재흥;김용권
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.32-33
    • /
    • 2000
  • 최근 디지털 정보 처리 기술의 획기적인 발전과 함께 저가의 반도체 레이저의 개발로 말미암아 광기록 장치(optical pickup device) 및 고속 광통신(optical fiber communication)분야에 응용을 위한 레이저 광학 시스템에 대한 연구가 활발하다. 광신호의 커플링(coupling) 및 스위칭(switching)을 기반으로 하는 이러한 광학 시스템은 일반적으로 광신호의 변조를 위한 광학 요소와 광학 요소의 공간적 제어를 위한 정밀 구동기로 구성되는데, 기존의 상용 시스템의 경우에는 독립적으로 기 제작된 광학 요소와 정밀 구동기를 사후에 조립하는 방법으로 소기의 목적을 달성하였다. 이와 같은 경우 제작에 많은 노력과 비용이 요구되며, 성능의 획기적인 향상을 기대하기 어려우므로 최근에는 Optical MEMS 혹은 MOEMS(Micro-Opto-Electro-Mechanical System)로 대변되는 마이크로머시닝기술(micromachining technology)을 이용한 초정밀 광학계의 제작 기술을 통하여 기존 시스템의 한계를 극복하고자 하는 노력이 다각도로 모색되고 있다. (중략)

  • PDF

Micromachining of PZT using Nd:YAG laser (Nd:YAG 레이저를 이용한 PZT의 미세가공)

  • Hong J.U.;Lee J.H.;Suh J.;Shin D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.223-224
    • /
    • 2006
  • In this study, we have investigated the micromachining of PZT to fabricate interdigitated electrodes of electro active material actuator using Nd:YAG laser We have observed groove shapes of PZT with changing beam power, scanning speed, gas, and so on to find optimum conditions of the laser processing for PZT grooves. As a result, this method has been applied to the laser micromachining for grooves in PZT surface, and we could have optimum parameters of Nd:YAG laser Finally it was shown that the laser micromachining of PZT can substitute fer bonding, etching and deposition processes in fabricating electro active material actuator embedded with interdigitated electrodes.

  • PDF

Technology Development of Micro Channel Fabrication using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술개발)

  • Yang S. B.;Chang W. S.;Kim J. G.;Shin B. S.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.237-240
    • /
    • 2004
  • In this study, we have developed a new $UV(\lambda=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. Also, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

  • PDF

Fabrication and characteristics of electrostatic micro mirror for optical disk drives (광 저장장치 응용을 위한 마이크로 미러의 제작과 그 특성)

  • Kim, Jong-Wan;Seo, Hwa-Il;Lee, Woo-Young;Rim, Kyung-Hwa;Jang, Young-Jo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. The mirror was fabricated by using MEMS technology. Especially, the Process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the process reliability. The mirror size was $2.5mm{\times}3mm$ and it needed about 35V for displacement of $3.2{\mu}m$.

Micro Channel Fabrication Technology Using UV Laser Micromachining (UV 레이저 마이크로머시닝을 이용한 마이크로 채널 제작기술)

  • 양성빈;장원석;김재구;신보성;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this study, we have developed a new UV$({\lambda}=355nm)$ laser micromachining technology by direct ablation method without masks. This technology allows that 3D micro parts can be fabricated rapidly and efficiently with a low price. And it has a benefit of reducing fabricating process simply. Due to micro parts' fabrication, such technologies need the control of XYZ stages with high precision, the design of optical devices to maintain micron spot sizes of laser beam and the control technology of laser focus. The developed laser manufacturing process for laser micromachining is that, after extracting coordinates of shape data from CAD model data, a beam path considering manufacturing features of laser beam is created by using genetic algorithm. This generated manufacturing process is sent to stage controller. In order to improve the surface quality of micro parts, we have carried out experiments on iteration manufacturing and beam step-over by using a minimum focus size. Moreover, we have fabricated a micro-channel through the developed laser micromachining technology and verified it through the results.

A Study on the Radius of Curvature of Concave Optical Fiber Tips fabricated by Laser-Induced Photothermal Effect (레이저 유도 광열 효과를 이용하여 제작된 오목한 광섬유 팁의 곡률 반경에 관한 연구)

  • Choi, Ji-Won;Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.871-876
    • /
    • 2019
  • We fabricated concave optical fiber tips using hydrofluoric acid solution and photothermal effect induced by $1.55{\mu}m$ wavelength laser applied to an optical fiber. The radius of curvature of the concave optical fiber tips fabricated with different applied laser power, etching time, and concentration of hydrofluoric acid was measured with an optical microscope. Then, we analyzed how the radius of curvature changes for those three variables. In addition, the reliability of the measurement method using a microscope was verified through a free spectral range(FSR) and a scanning electron microscope(SEM). Through this paper, the radius of curvature can be adjusted by the variables of the fabrication process of concave optical fiber tips; thus, it is overcoming the limitations of conventional optical fiber etching methods using hydrofluoric acid solutions.

A Study on the Radiation Characteristics of Concave Optical Fiber Tips (오목한 광섬유 팁의 방사특성에 관한 연구)

  • Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.731-736
    • /
    • 2017
  • In this paper, we report the fabrication of concave surface fiber tips for optical resonators. It was confirmed that the radius of curvature on fiber end can be controlled by introducing the hydrofluoric acid solution and the wavelength of $1.55{\mu}m$ laser which is absorbed well in the etchant to induce the photothermal effect. Using the microscope images, we observed the proposed concave fiber tip fabrication method is effective to make the controllable concave tips. We also observed changes in the size of the beam emitted from the tips with the various radius of curvature using the beam profiler. The authors believe that the proposed method will be applied to resonators for optical communications.