• Title/Summary/Keyword: 레이저유도형광

Search Result 109, Processing Time 0.022 seconds

The Characterization and Coatings on 304 Stainless Steel by Laser Induced Fluorescence Spectroscopy using the High Resolution Charge Coupled Device (레이저 유도형광분광기에서 고정밀 전하장치를 이용한 304 스테인레스 스틸의 코팅과 특성)

  • Kim, Ki-Jun;Lee, Jou-Youb;Sung, Wan-Mo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.385-390
    • /
    • 2016
  • In our study, ceramics coatings by additives of nano alumina and magnesia have cured on 304 stainless steel at $170^{\circ}C$ 2h. We designed and experimented the coated specimens that were characterized by laser induced fluorescence spectroscopy using the charge coupled device and scanning electronic microscopy(SEM). The result was revealed the ceramic coatings added fillers has more excellent on adhesive property and scratch resistance, and less weight loss in acid solution than ceramic coatings non-added fillers. Therefore, this study has designed and manufactured the electromagnetic spectrometry with CCD and then analyzed the coatings on 304 stainless steel using the High Resolution Charge Coupled Device in improving the corrosion resistance of 304 stainless steel. Nowadays, coatings of stainless steel have increased by industrial demand in hygienes, aviation, instrumentations and robotics as the industry special application develops.

A Study on Effect of n-heptane Mixing on PAH and Soot Formation in Counterflow Ethylene Diffusion Flames (대향류 에틸렌 확산화염내 PAH 및 매연의 생성에 미치는 n-헵탄 혼합의 영향에 관한 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to investigate the effect of n-heptane mixing on PAH and soot formation, small amount of n-heptane has been mixed in counterflow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon(PAH) concentration, respectively. Results showed that the mixing of n-heptane in ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. However, signals of LIF for 20% n-heptane mixture flame were lower than that of pure ethylene flame. It can be considered that the enhancement of PAH and soot formation by the n-heptane mixing of ethylene can be explained by methyl($CH_3$) radical in the low temperature region. And it can be found that reaction rate of H radical for 10% n-heptane plays a crucial role for benzene formation.

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid (분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구)

  • Cha, Wan-Sik;Cho, Hye-Ryun;Jung, Euo-Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.

Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF (라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

Laser Diagnostics of Spray and Combustion Characteristics Using Multi-Component Mixed Fuels in a D.I. Diesel Engine (다성분 혼합연료를 이용한 디젤 분무 및 연소특성의 광계측 진단)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Senda, Jiro;Fujimoto, Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.172-180
    • /
    • 2006
  • This study was to analyze the effect of mixed fuel composition and mass fraction on the characteristics of evaporating diesel spray and combustion under the various ambient conditions. The characteristics of vaporization distribution and combustion were visualized by laser induced fluorescent method and direct photography. The experiments were conducted in the constant volume vessel and rapid compression expansion machine with optical access. Multi-component fuels mixed i-octane, n-dodecane and n-hexadecane were injected the vessel and rapid compression expansion machine with electronically controlled common rail injector. Experimental results show that fuel vapor formed stratified distribution. And vaporization and diffusion are become actively increasing in mass fraction of low boiling point component. Consequently multi-component fuels were expected to control the evaporating behavior according to their suitable mass fraction.

Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM (LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법)

  • Jeong, Dong-Woon;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

Study of Hydrogen Turbulent Non-premixed Flame Stabilization in Coaxial Air Flow (동축공기 수소 난류확산화염에서의 화염안정성에 대한 실험적 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.190-197
    • /
    • 2008
  • It was experimentally studied that the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition to reveal the newly found liftoff height behavior of hydrogen jet. The objectives are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The hydrogen jet velocity was changed from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As a result, it was found that the stabilization of lifted hydrogen diffusion flames is correlated with a turbulent intensity and Karlovitz number.

Study on the characteristics of laminar lifted flames using plannar laser induced fluorescence technique (평면 레이저유도 형광법을 이용한 부상화염의 특성 연구)

  • Lee, Byeong-Jun;Jeong, Seok-Ho;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.23-32
    • /
    • 1997
  • Characteristics of the lifted flame which is generated by issuing of the fuel through the miniature nozzle, d=0.164 mm, are studied using the planar laser induced fluorescence technique. OH radical is excited on the $Q_1$(8) line of the $A^2{\Sigma}\ ^+{\leftarrow}\ X^2{\prod}$ (1,0) band transition(283.55 nm) and LIF signals are captured at the bands of (0,0) and (1,1) transition(306-326 nm) using the filters and ICCD camera. Hydroxyl radical(OH) profile for nozzle attached flame shows that OH radical populations at the flame sides and flame tip are larger than those at the base. But for the lifted flame (tribrachial flame) case, those are larger at the flame base than at the flame tip and flame sides. The OH radical is more dense near the center line of flame base at the blowing out. This fact proves the Chung and Lee's blowout theory - blowout occurs when the flame is anchored at the flame axis.

  • PDF

Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine (가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석)

  • Cho, Hoon;Hwang, Seung-Hwan;Lee, Jong-Hwa;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

Measurement of Tropospheric HOx(OH, $HO_2$) Radicals using Laser-Induced Fluorescence Technique (대류권 HOx(OH, $HO_2$) 라디칼 농도 측정 기기 개발 -레이저 유도 형광법 (Laser-Induced Fluorescence Technique))

  • 민경은;도태용;이호재;최종호;이미혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.51-52
    • /
    • 2003
  • 대기 중에서 HOx(OH, H $O_2$) 라디칼은 매우 중요한 산화제로, 대류권내 광화학 반응에 있어 그 역할이 핵심적이라 할 수 있다. 이러한 OH 라디칼의 정확한 농도를 측정하는 것은 대기의 산화능, 기후 변화 및 대기 중의 광화학 반응을 보다 정확히 이해하기 위해 매우 필요한 연구이다. 그러나 OH를 비롯한 HOx 라디컬의 농도 측정은 이들이 라디칼이기 때문에 매우 어려운 것이 사실이다. 즉, 이들은 대기 내에 존재하는 양이 절대적으로 적고 (OH: $10^{6}$molecules cm-$^3$, H $O_2$: $10^{8}$molecules cm-$^3$), 반응성이 커서 수명이 짧기 때문에 측정에 많은 어려움이 따른다. (중략)

  • PDF