• Title/Summary/Keyword: 레이블 추출

Search Result 120, Processing Time 0.03 seconds

A Study on Type Classification and Subpattern Extraction Using Structural Information of Radical in Printed Hanja (인쇄체 한자에서 Radical의 구조적 정보를 이용한 형식분류 및 부분패턴 추출에 관한 연구)

  • 김정한;조용주;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.3
    • /
    • pp.232-247
    • /
    • 1991
  • This paper proposes a new classification algorithm using characteristic and structural information of printed Hanja as preliminary stages of Hanja-character recognition. Hanja is difficult for not only recognition but classification as many character and complicated structure. In this paper, to solve thie problem, extracted common subpattern in classified pattern after processing type classification fot Hanja pattern. First, we extracted subpattern, after we process preprecessing about input of character pattern, extracting directional segment, labeling on 4-directional pattern and 12 type classified using structural information based on the subpattern existing region of character pattern. Though the experiment, this study obtained that classified rate of Hanja is 93.07% on 1800 character of educational Hanja and 90.12% on 4888 character of KS C5601 standard TRIGEM LBP Hanja font and saw that as extracting subpattern at classified data was this paper possibly applied to the recognition.

  • PDF

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Intelligent DB Retrieval System for Marine Accidents Using FCM (FCM을 이용한 지능형 해양사고 DB 검색시스템 구축)

  • Park, Gyei-Kark;Han, Xu;Kim, Young-Ki;Oh, Se-Woong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Marine accidents have always caused huge economic losses, as well as environmental pollution. Prevention of marine accidents has become a focus of argumentation. The analysis of past accident cases, reviewing the experience and lessons, is important and necessary for preventing marine accidents. With the same subject above, the Korean Maritime Safety Tribunal provides for past marine accidents' written judgments and analysis of judgment and associated retrieval system on its homepage. In these systems, the name of the ship, accident occurrence time, accident pattern or related keywords are used as search conditions. However, most of the marine events' happening were not due to a single reason, but multiple ones. In addition, one marine event could often come under several categories. In this case, now the retrieval systems' DB is used on the Korean Maritime Safety Tribunal homepage was built based on single category and failed to be able to retrieve according to multiple reasons or multiple categories. In order to solve this problem, a more practical retrieval approach might be needed. Therefore, in this paper, a new retrieval system will be proposed, which using the linguistic label to describe the cluster after analyzing the relational properties between marine accidents and clustering by FCM algorithm, and then adding an interface to allow users to get the results they want through choosing multiple reasons or multiple categories.

Extraction of Landmarks Using Building Attribute Data for Pedestrian Navigation Service (보행자 내비게이션 서비스를 위한 건물 속성정보를 이용한 랜드마크 추출)

  • Kim, Jinhyeong;Kim, Jiyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.203-215
    • /
    • 2017
  • Recently, interest in Pedestrian Navigation Service (PNS) is being increased due to the diffusion of smart phone and the improvement of location determination technology and it is efficient to use landmarks in route guidance for pedestrians due to the characteristics of pedestrians' movement and success rate of path finding. Accordingly, researches on extracting landmarks have been progressed. However, preceding researches have a limit that they only considered the difference between buildings and did not consider visual attention of maps in display of PNS. This study improves this problem by defining building attributes as local variable and global variable. Local variables reflect the saliency of buildings by representing the difference between buildings and global variables reflects the visual attention by representing the inherent characteristics of buildings. Also, this study considers the connectivity of network and solves the overlapping problem of landmark candidate groups by network voronoi diagram. To extract landmarks, we defined building attribute data based on preceding researches. Next, we selected a choice point for pedestrians in pedestrian network data, and determined landmark candidate groups at each choice point. Building attribute data were calculated in the extracted landmark candidate groups and finally landmarks were extracted by principal component analysis. We applied the proposed method to a part of Gwanak-gu, Seoul and this study evaluated the extracted landmarks by making a comparison with labels and landmarks used by portal sites such as the NAVER and the DAUM. In conclusion, 132 landmarks (60.3%) among 219 landmarks of the NAVER and the DAUM were extracted by the proposed method and we confirmed that 228 landmarks which there are not labels or landmarks in the NAVER and the DAUM were helpful to determine a change of direction in path finding of local level.

Musical Score Recognition with SOM and Enhanced ART-1 (SOM과 개선된 ART-1을 이용한 악보 인식)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1064-1069
    • /
    • 2013
  • In this paper, we propose a Musical Score Recognition with SOM and Enhanced ART-1 Algorithm. First, we apply Hough transform and Otsu's binarization to the original BMP format image and extract notes from separated passages by histogram analysis with removing staff lines. Then extracted musical notes are normalized to same size by SOM algorithm and ART-1 algorithm plays the learning and recognition role. The experiment verifies that the proposed method is quite effective on printed musical score recognition.

Character String Detection using Character-Edge Map with Adaptive Character Size and Character String Orientation in Natural Images (자연영상에서 문자의 크기와 문자열의 방향에 적응적인 문자-에지 맵을 이용한 문자열 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.262-265
    • /
    • 2007
  • 이미지 데이터베이스 시스템에서 이미지에 포함된 문자정보를 기반으로 검색어를 사용한다면 검색의 정확도 높일 수 있다. 이미지에서 문자정보를 추출을 위한 전단계로서 문자열 영역 검출이 필수적인 과제가 된다. 그러므로 본 논문에서는 문자의 크기와 문자열의 방향에 적응적인 문자-에지 맵을 이용한 문자열 영역 검출 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지로 레이블 이미지를 얻고, 그 영역의 문자구조 특징을 분석하기 위해서 배열문법으로 문자-에지 맵에 적응적으로 분석한다. 문자-에지 맵의 분석결과로서 문자열 후보 영역을 얻고, 문자열 영역의 구조적인 특징을 이용하여 문자열 후보 영역을 검증함으로서 최종적인 문자열 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 자연영상에서 기울어진 문자열과 다양한 크기의 문자를 갖는 문자열 영역을 효과적으로 검출하였다.

  • PDF

Facial Regions Detection Using the Color and Shape Information in Color Still Images (컬러 정지 영상에서 색상과 모양 정보를 이용한 얼굴 영역 검출)

  • 김영길;한재혁;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • In this paper, we propose a face detection algorithm using the color and shape information in color still images. The proposed algorithm is only applied to chrominance components(Cb and Cr) in order to reduce the variations of lighting condition in YCbCr color space. Input image is segmented by pixels with skin-tone color and then the segmented mage follows the morphological filtering an geometric correction to eliminate noise and simplify the segmented regions in facial candidate regions. Multiple facial regions in input images can be isolated by connected component labeling. Moreover tilting facial regions can be detected by extraction of second moment-based ellipse features.

  • PDF

Text Region Detection using Feature of Adaptive Character-Edge Map in Natural Images (자연영상에서 적응적 문자-에지 맵 특징을 이용한 텍스트 영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.181-184
    • /
    • 2007
  • 자연영상에 포함된 텍스트는 많은 중요한 정보를 포함하고 있으므로 자연영상에서 텍스트 정보를 검출하는 연구가 활발히 진행되고 있다. 본 논문에서는 문자 영역의 구조적인 특정을 배열문법으로 정의한 적응적 문자-에지 맵을 제안하여 텍스트 영역을 검출한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지를 레이블링하고 그 영역의 문자구조 특징을 분석하기 위해서 적응적 문자-에지 맵을 분석한다. 적응적 문자-에지 랩의 분포 상태를 분석함으로서 텍스트 후보 영역을 검출하고, 텍스트 영역의 에지 히스토그램 프로파일을 분석함으로서 텍스트 후보 영역에 대한 검증을 수행하여 최종적인 텍스트 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 기울어진 텍스트와 다양한 크기의 텍스트 구성된 자연영상에서 텍스트 영역을 효과적으로 검출하였다.

  • PDF

Improving Rule Generation Precision for Wrappers using Domain Knowledge (도메인 지식을 이용한 랩퍼에서 규칙 생성 정확도 향상)

  • 정창후;서정현;류범종;맹성현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.662-664
    • /
    • 2003
  • 기존의 도메인 지식 기반의 랩퍼 학습 방법은 도메인에 대한 정보를 바탕으로 해당 정보 소스에 대한 렙퍼를 생성한다. 응응 분야에 맞게 정의된 도메인 지식을 이용함으로써 정보 소스에서 제공하는 다양한 텍스트의 의미와 형태를 이해할 수 있다. 그러나 정보 소스에서 제공되는 모든 텍스트에 의미 인식의 근거가 되는 레이블이 붙어서 제공되는 것이 아니기 매문에, 도메인 지식만을 이용해서 랩퍼를 학습하는 방법은 한계에 부딪힐 수 밖에 없다. 이러한 문제를 해결하기 위해서 본 논문은 인터넷에 존재하는 다양한 웹 정보 소스에서 효율적이고 정확하게 랩퍼를 생성할 수 있도록 하는 도매인 지식 기반의 확률적 랩퍼 생성 시스템을 제안한다. 효율적이고 정확한 랩퍼 생성 시스템을 구축하기 위해서 도메인 지식뿐 아니라 상세 정보로 연결되어 있는 하이퍼렁크와 엔티티 인식을 위한 확률모델을 이용하였다. 이렇게 여러 가지 방법을 적용함으로써 사용자의 개입없이 다양한 정보 소스에 대해서 보다 추출 성능이 좋은 랩퍼를 생성할 수 있다.

  • PDF

Learning Unified and Robust Representations across Various Tasks within a Federated Learning Environment (연합 학습 환경에서 통합되고 강인한 다중 작업 학습 기법)

  • Ankit Kumar Singh;Subeen Choi;Bong Jun Choi
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.798-800
    • /
    • 2024
  • 현대의 머신러닝 환경에서는 특히 모바일 컴퓨팅 및 사물 인터넷(IoT)의 애플리케이션 영역에서 개인 정보를 보호하고 효율적이며 확장 가능한 모델에 대한 관심이 높아지고 있다. 본 연구는 연합 학습(FL)과 자기지도 학습(self-supervised learning)을 결합하여 이질적(heterogeneous)인 분산 자원에서 레이블이 없는 데이터를 활용하면서 사용자의 개인 정보를 보호하는 새로운 프레임워크를 소개한다. 이 프레임워크의 핵심은 SimCLR 과 같은 자기지도 학습 기법으로 학습된 공유 인코더로, 입력 데이터에서 고수준 특성을 추출하도록 설계되었다. 또한 이 구조를 통해 주석(annotation)이 없는 방대한 데이터셋을 활용하여 모델 성능을 향상시키고, 여러 개의 격리된 모델이 필요하지 않아 리소스를 크게 최적화할 수 있는 가능성을 확인했다. 본 연구를 통해 생성된 모델은 중앙 집중 방식(CL)이면서 자기지도학습으로 학습되지 않은 기존 모델과 비교하여 전체 평균 정확도가 14.488% 향상됐다.