• Title/Summary/Keyword: 레이더 반사면적

Search Result 40, Processing Time 0.025 seconds

The analysis of differences of mean basin precipitation between TM and radar using correlation with basin characteristics and rainfall patterns (TM과 레이더를 이용한 유역평균강수량 차이와 유역특성 및 강우형태와의 상관성)

  • Park, Jaeheyon;Sung, Janghyun;Cho, Yohan;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.469-480
    • /
    • 2020
  • This study analyzed the differences of mean basin precipitation between TM and radar based on the 51 standard basins in Han river and Nakdong river when large scale of heavy rains occurred in 2018. The result shows that the differences between radar and TM are -65.05 ~ 26.09% and -82.00 ~ 3.80% for accumulated and 10 min. maximum mean basin precipitation, respectively. The correlation analysis between the differences of estimated mean basin precipitation and basin characteristics such as average altitude of basin, area of basin, and shape factor of basin presents that there is no clear correlation between them. And the differences of point precipitation also shows the similar tendency with those of mean basin precipitation. In order to find out the correlation between them and meteorological conditions such as rainfall patterns, the reflectivity of radars according to the observation angles is analyzed at the selected basins, and then it is found that the differences of mean basin precipitation between TM and radar is more dominated by the meteorological conditions than by the topographic conditions such as basin characteristics.

Development of UHF Band antenna for Integrated Communication (통합마스트 통합통신용 UHF 대역 안테나 개발)

  • Jung, Kwang-Sik;Lee, Jong-Hak;Kim, Young-Wan;Ra, Young-Eun;Jeon, Jung-Ik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.453-460
    • /
    • 2020
  • This paper, UHF band integrated communication antenna for ship communication is designed as a flat type that can be mounted on the integrated mast among integrated communication antennas such as integrated communication, ship communication, broadcasting, and telephone of the ship. The unified mast mounted antenna is an integrated communication antenna applied to the Navy's KDDX, which is an optimized type of integrated communication antenna including a 'composite slope' structure including operational capability, survivability, and improved operability and maintainability. The existing rotary radar and a plurality of monopole-type communication antennas were changed from an irregularly attached shape to the mast exterior to an integrated mast shape including a flat-type integrated communication antenna. the radar reflection area index (RCS) is significantly lowered and compared to overseas products. The goal is to develop a gain broadband antenna.

Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model (6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법)

  • Gwak, Sang-yell;Jung, Hoi-in
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

Study on Effect of Shell Plate Deformation to Radar Cross Section of Warship (선체외판의 변형이 수상함 RCS에 미치는 영향 연구)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.509-515
    • /
    • 2011
  • The radar cross section (RCS) of warships is a crucial design factor to improve the survivability in terms of not only low observablity of the platform but also efficiency of on-board sensors and jamming devices against enemy threat. In design stage, numerical models are generated in order to quantitatively assess RCS, of which hull surfaces are modeled with the finite number of the flat plate. However, in practice, hull surfaces are permanently deformed by various kinds of loads such as winds and ocean waves faced during operations. In this paper, the effect of these shell plate deformation to RCS is numerically investigated. For this purpose, RCS calculations are carried out for various kinds of numerical models, such as single plates, dihedrals, large-sized undulate plates, and virtual warships, with some extent of permanent deformation. The results are compared with those of corresponding models without permanent deformation. It is concluded that the permanent deformation of hull surface highly influences RCS characteristics of warships, therefore they should be considered in the RCS analysis.

Conceptual Design of Fighter-class Aircraft Using Integrated Commercial Tools (통합된 상용 툴을 이용한 전투기급 항공기 개념설계)

  • Lee, Sung-Jin;Nam, Hwa Jin;Park, Young Keun;O, Jangwhan;Lee, Dae Yearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • Automated design program using commercial process integration and optimization program was developed for conceptual design of fighter-class aircraft. Wind tunnel test data and performance analysis results were compared for the verification of analysis tool of this program, and the usefulness of the tool was found. After integration with radar cross section analysis tool, the correlation with configuration design variables of wing, tail and performance parameters was identified by design of experiment, and the optimized configuration for weight and RCS was derived from optimization of empty weight and average frontal RCS value. After parameter definition of fuselage, the program can be implemented for full aircraft configuration.

Verification of Durability of Electromagnetic Metamaterial Absorber in Temperature Varying Environment for Its Application to Integrated Mast of Next-Generation Destroyer (차기구축함 통합마스트에 적용을 위한 전자기파 메타물질 흡수체의 온도 환경 내구성 검증)

  • Ra, Young-Eun;Kim, Yongjune;Jung, Hyun-June;Park, Pyoungwon;Jo, Jeongdai;Lee, Joonsik;Kim, Myungjoon;Jung, Joonkyo;Lee, Gun-Min;Lee, Jong-Hak;Lee, Hak-Joo
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.347-353
    • /
    • 2020
  • In this paper, the durability of an electromagnetic metamaterial absorber is verified in a temperature varying condition mimicking a maritime environment for the purpose of applying it to reduce the radar cross section of an integrated mast of the next-generation destroyer. To validate the durability, the reflectance of the electromagnetic metamaterial absorber was measured after storing it in a chamber that can control the temperature according to Procedure I of Method 501.7 included in MIL-STD-810H. Before and after the environmental test, both of the measured reflectances were retained less than -10 dB over the X band, that can guarantee the stealth functionality.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

500 lbs-class Air-to-Surface Missile Design by Integration of Aerodynamics and RCS (공력해석과 RCS해석 통합 500 lbs급 공대지 미사일 최적설계)

  • Bae, Hyo-Gil;Lee, Kwang-Ki;Jeong, Jun-O;Sang, Dae-Kyu;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.184-191
    • /
    • 2012
  • Aerodynamic analysis(DATCOM) and radar cross section(RCS) analysis(POFACETS) were integrated for the air-to-surface missile concept design using a design framework. The missile geometry was defined based on the CAD(CATIA) for synchronizing the manufacturing with design processes. Aero/RCS analyses were linked with the CAD process under the ModelCenter framework in order to receive the geometry data automatically. The missile design baseline configuration was selected from ROC(requirement of capability). Then the RCS minimization was performed subject to thelargerthebetter constraint of the missile lift-to-drag ratio. This study demonstrated that various design strategies can be performed efficiently about many missile configurations using this design framework in the missile conceptual design phase.

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.