• Title/Summary/Keyword: 레이다 탐사(GPR)

Search Result 49, Processing Time 0.029 seconds

Application of Radar Survey to a Granite Quarry Mine (화강암 석산 지역에서의 레이다 탐사의 적용)

  • Seol Soon-Jee;Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • To delineate the inhomogeneities including fractures and to estimate the freshness of rock borehole radar consisting of the reflection and tomography methods, and GPR surveys were conducted at a granite quarry mine. The borehole reflection survey using the direction finding antenna was also conducted to get the spatial orientations of reflectors. 20 MHz was adopted as the central frequency for the borehole radar reflection and tomography surveys and 100 MHz was for GPR. Through the interpretation of borehole reflection data using dipole and direction finding antenna as well as GPR images, which are good agreement with each other, we could determine the orientation of the major fractures in three dimensional way. Parts of travel time curves of tomography data showed the anisotropy, which is uncommon in granite quarry. By comparing the tomography data and TeleViewer images, the anisotropy effect in this area are closely related to fine fissures aligned in the same direction. The area confined by the two fractures, MF2 and MF5, might consist of the most fresh granite in the surveyed area, which was concluded from the borehole radar tomography, and GPR images as well as the distribution of anisotropy.

  • PDF

Survey of underwater deposits using ground penetrating radar (지표레이다 (GPR) 탐사에 의한 하상퇴적물 조사)

  • Chang, Hyun-Sam;Jeong, Seong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.163-178
    • /
    • 2002
  • Investigation of underwater sedimentary layers has been carried out with GPR (Ground Penetration Radar) survey. GPR survey has been proved to be very satisfactory since the target area has shallow water depth of about 2.5 m, is lake with no water flow, and the thickness of mud layer, which is a main survey target, is relatively thin. The results clearly showed the underwater sedimentary layers, which includes mud, sand, gravel and basement layer. Specially, the distribution and total amount of mud layers from the survey, which is main target of removal, can be used as a basic data for the dredging of mud layer in the area.

  • PDF

지표레이다(GPR) 탐사에 의한 하상퇴적물 조사

  • Jang, Hyeon-Sam;Jeong, Seong-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.51-62
    • /
    • 2002
  • Investigation of underwater sedimentary layers has been carried out with GPR(Ground Penetration Radar) survey. FPR survey has been proved to be very satisfactory since the target area has shallow water depth of about 2.5 m, is a lake with no water flow, and the thickness of mud layer, which is a main survey target, is relatively thin. The results clearly showed the underwater sedimentary layers, which includes mud, sand, gravel and basement layer. Specially, the distribution and total amount of mud layers from the survey results can be used as a basic data for the dredging of mud layer in the area.

  • PDF

Application of Ground Penetrating Radar for Assessing Riverbed Variation Near Bridge Piers (지하투과레이다를 이용한 교각 주변의 하상변화 조사)

  • Park, In-Chan;Cho, Won-Cheol;Lee, Jong-Kook
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • The assessment of erosional and depositional patterns near bridge piers is essential to understand the fluvial scour process. Geophysical surveys are particularly effective in determining the riverbed variations in a river and may also be of value for obtaining the previous scour history below the riverbed profile. In this study, GPR (Ground Penetrating Radar), as a non-destructive geophysical technique, was used to assess the existence and depth of existing and infilled scour thickness, streambed materials, and pre- and post- scour surfaces at the bridge piers in Han River, June 2002 and October 2002. The GPR acquisition system used for obtaining profiles of the shallow subsurface deposits was a portable GSSI SIR 2000 system with 100 and 400 MHz antennas. The GPR data obtained along the 24 bridge piers in the flow direction of the river and in the surroundings of 5 bridge piers were compared and presented in this study. It is concluded that GPR surveys can be effective in determining both the water depth and sub-bottom geological structure near the bridge piers and abutments provided that the appropriate instrumentation and operational procedures are applied.

Dipole Antennas and Radiation Patterns in the Three-Dimensional GPR Modeling (쌍극자 안테나를 고려한 3차원 지표레이다 탐사 모델링과 방사 패턴에 대한 고찰)

  • Choi Yun-Gyoung;Seo1 Soon-Jee;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.45-54
    • /
    • 2001
  • A three-dimensional finite difference time-domain modeling algorithm based on staggered grid and considering transmitting and receiving antennas has been developed to simulate Ground Penetrating Radar (GPR) survey. This algorithm adopted the subcellular method to simulate the dipole antennas being used in GPR system and added resistors to reduce ringing caused by the reflections at the ends of an antenna. Comparison of the output voltages in the presence of the resistors for half-space said that the ringing and the amplitude of output voltage decreased as the number of resistors increased, and the antenna was designed based upon this result. Radiation patterns were derived to understand the distribution of electric field energy in the planes including or normal to the antenna. The electric field energy concentrated on vertical direction in the plane including antenna more than in normal plane.

  • PDF

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

CHUNGJU REGULATION LAKE SUB-BOTTOM PROFILING USING GROUND PENETRATING RADAR (충주 조정지댐 저면의 레이다탐사에 의한 지층조사)

  • HyoungSooKim;YeKwonChoi
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.269-276
    • /
    • 2003
  • Sub-bottom profile were conducted in Chungju Regulation Lake by use of ground penetrating radar(GPR). The survey area covers approximately 1,000,000 $m^2$ and total survey line length is about 5km and more. GPR surveys with GPS system were made across and transverse direction of the lake. From the survey results of GPR, it could be possible to distinguish the gravel and/or sand dominant bed from silt and/or clay material dominant bed.

  • PDF

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.