• Title/Summary/Keyword: 레이다 단면적

Search Result 82, Processing Time 0.029 seconds

Sensitivity of the Continuous Welded Rail and the Fastener on the Track Stability (궤도 안정성에 대한 장대레일과 체결구의 민감도)

  • Han, Sang Yun;Park, Nam Hoi;Lim, Nam Hyoung;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.719-726
    • /
    • 2006
  • The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. Therefore, the use of the CWR track has increased consistently in the worldwide. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress in the summer. Among many CWR parameters, the influence of the sectional properties of the rail was investigated on the stability of CWR track in this study. Also, the sensitivity of the broken fastener and the stiffness of the fastener system such as the translational and rotational stiffness was investigated.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.

Development of a Computational Electromagnetics Code for Radar Cross Section Calculations of Flying Vehicles (비행체 RCS 예측을 위한 CEM 기법 연구)

  • Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • The ability to predict radar return from flying vehicles becomes a critical technology issue in the development of stealth configurations. Toward developing a CEM code based on Maxwell's equations for analysis of RCS reduction schemes, an explicit upwind scheme suitable for multidisciplinary design is presented. The DFFT algorithm is utilized to convert the time-domain field values to the frequency-domain. A Green's function based on near field-to-far field transformation is also employed to calculate the bistatic RCS. To verify the numerical calculation the two-dimensional field around a perfectly conducting cylinder is considered. Finally results are obtained for the scattering electromagnetic field around an airfoil in order to illustrate the feasibility of applying CFD based methods to CEM.

Design of High-Sensitivity Compact Resonator using Interdigital-Capacitor Structure for Chipless RFID Applications (인터디지털-커패시터 구조를 이용한 Chipless RFID용 고감도 소형 공진기 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2021
  • In this paper, the design method for a high-sensitivity compact resonator for chipless RFID tags is proposed. Proposed high-sensitivity compact resonator uses an interdigital-capacitor structure instead of a capacitor-shaped strip structure in a conventional ELC resonator. The length of the electrode plate of the IDC structure is longer than that of the conventional capacitor-shaped structure, resulting in a larger equivalent capacitance of the resonator. This can lower the resonant peak frequency of the RCS characteristic. Two resonators with the same length of the square loop and the width of the strip are fabricated on an RF-301 substrate with a thickness of 0.8 mm. The experiment results show that the resonant peak frequency and value of the bistatic RCS for the ELC resonator were 4.305 GHz and -30.39 dBsm, whereas those of the proposed IDC resonator were 3.295 GHz and -36.91 dBsm. Therefore, the size of the resonator is reduced by 23.5% based on the measured resonant peak frequency of the RCS characteristic.

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Design and Fabrication of Miniaturized Chipless RFID Tag Using Modified Bent H-shaped Slot (변형된 구부러진 H-모양 슬롯을 이용한 소형 Chipless RFID 태그 설계 및 제작)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.815-820
    • /
    • 2023
  • In this paper, the design method of a miniaturized chipless RFID tag using a modified bent H-shaped slot was proposed. The proposed modified bent H-shaped slot was appended on the rectangular conductor plate printed on one side of a 20 mm × 50 mm FR4 substrate with a thickness of 0.8 mm. The resonant dip frequency of the bistatic RCS for the proposed modified bent H-shaped slot was compared with the cases when the H-shaped, U-shaped slot, and bent H-shaped slots were added, respectively, on the conductor plate. The simulated resonant dip frequencies for H-shaped, U-shaped, and bent H-shaped slots were 5.907 GHz, 4.918 GHz, and 4.364 GHz, respectively. When the proposed modified bent H-shaped slot was added, the resonant dip frequency was decreased to 3.741 GHz, and, therefore, the slot length was reduced by 36.7% compared to the H-shaped slot case. Experiment results show that the resonant dip frequency of the fabricated modified bent H-shaped slot was 3.9 GHz.

Miniaturization of Chipless RFID Tag Using Interdigital-Capacitor-Shaped Slot Resonator (인터디지털-커패시터-모양 슬롯 공진기를 이용한 Chipless RFID 태그의 소형화)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.538-543
    • /
    • 2024
  • In this paper, the miniaturization of a chipless RFID tag using an interdigital-capacitor-shaped slot was studied. The proposed interdigital-capacitor-shaped slot was appended on the rectangular conductor plate printed on one side of a 20 mm × 50 mm FR4 substrate with a thickness of 0.8 mm. The resonant dip frequency of the bistatic RCS for the proposed interdigital-capacitor-shaped slot was compared with the cases when the H-shaped and modified bent H-shaped slots were added, respectively, on the conductor plate. The simulated resonant dip frequencies for H-shaped and modified bent H-shaped slots were 5.907 GHz and 3.741 GHz, respectively. When the proposed interdigital-capacitor-shaped slot was added, the resonant dip frequency was decreased to 2.889 GHz, and, therefore, the slot length was reduced by 51.1% compared to the H-shaped slot case. Experiment results show that the resonant dip frequency of the fabricated nterdigital-capacitor-shaped slot was 3.07 GHz.

A comparative study on discharge measurement using multi-point radar surface velocity meter (다회선 표면유속 측정시스템을 이용한 유량측정 비교 연구)

  • Yeong Seon Yun;Sang Uk Cho;Se Hwan Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.369-369
    • /
    • 2023
  • 표면유속계는 비접촉식으로 하천의 유량을 측정하는 방식이기 때문에 효율적이며, 특히 홍수발생시 안전한 측정이 가능하다. 이러한 비접촉식 방식이 갖는 장점으로 인해 홍수기 측정에 표면유속계가 널리 활용되고 있다. 하지만 포인트 방식의 표면유속계의 경우에도 측점마다 측정장비를이동하는 과정에서 어느 정도의 측정시간이 소요되며, 측정 시마다 기본적으로 최소 2~3인의 인력을 필요로 한다. 최근 발생하는 홍수사상은 돌발강우에 의해 발생할 뿐만 아니라 단시간 내에 급격한 수위 및 유량변화가 발생하기 때문에 대응하기 매우 어려우며 특히, 야간에 발생하는 호우사상은 야간측정에 따른 안전 사고가 발생할 우려가 있다. 따라서 본 연구에서는 홍수 시 유량측정에 효율적으로 대응할 수 있는 방안으로 다회선 표면유속계를 이용한 유량측정방법을 실제 하천에 적용하고 표면유속을 이용한 다양한 유량산정방법을 실측결과와의 비교를 통해 적용성을 검토하였다. 표면유속계는 다회선 구성이 가능한 레이다유속계(RQ-30) 5대를 활용하였으며, 금강 본류에 위치한 세종시(햇무리교) 관측소를 대상으로 홍수기 유량측정을 수행하였다. 표면유속을 이용한 유량산정방법으로는 5개 유속계의 측정구간을 합산하는 중간단면적법과 표면유속을 지표로하는 지표유속법을 적용하였으며, 유량산정 결과는 기존 관측소의 수위-유량관계의 환산유량과 ADCP를 이용한 실측유량을 비교하였다. 다회선 표면유속 측정시스템을 이용하여 유량을 산정한 결과, 중간단면적법 및 지표유속법 모두 실측치와의 상대오차가 5% 이내로 비교적 정확한 유량측정이 가능한 것으로 확인되었다. 따라서, 향후 홍수기 유량측정이 어렵거나 위험한 지점을 대상으로 홍수가 주로 발생하는 기간에 일시적으로 설치하여 활용이 가능할 것으로 판단된다.

  • PDF