본 논문에서는 복부 CT 영상에서 폐 부위를 빠르게 분할하기 위하여 그래픽 하드웨어를 사용한 레벨 셋 기법을 제안한다. 제안방법은 다음과 같이 세 단계로 구성된다. 첫째, 레벨 셋 기법을 그래픽 하드웨어로 효율적으로 구현하기 위하여 초기 레벨 셋 값 설정과 설정된 레벨 셋 값을 텍스처메모리에 저장한다. 둘째, 레벨 셋 기법의 가장 중요한 부분인 속도함수를 그래픽 하드웨어의 빠른 연산을 이용하여 계산하고, 레벨 셋 값을 갱신한다. 셋째, 갱신된 레벨 셋 값을 통하여 제로-레벨 셋을 찾는다. 본 논문에서는 제안 방법을 평가하기 위하여 일련의 복부 CT 영상을 사용하며, 육안평가 및 수행시간 면에서 기존 소프트웨어 기반 레벨 셋 기법과 비교분석한다. 실험결과 본 제안방법은 소프트웨어 기반 레벨 셋 기법과 분할결과를 동일하게 유지하면서 평균 9배 빠르게 폐 부위를 분할하였다.
레벨 셋 트리는 다차원에 정의된 확률 밀도 함수를 표현하는데 유용하다. 복잡한 데이터의 구조를 트리 형태로 시각화하여 데이터의 형태를 효율적으로 파악할 수 있으며 클러스터링 분석에 효과적으로 이용할 수 있다. 본 논문에서는 미지의 확률 밀도 함수에서 생성된 데이터 샘플로부터 레벨 셋 트리를 생성하는 알고리즘을 제안한다. 제안된 알고리즘은 레벨을 0에서부터 무한대로 증가시키며 밀도 함수의 각 레벨 셋을 추정하고, 이로부터 레벨 셋 트리를 생성한다. 이를 위해 본 논문에서는 one-class 서포트 벡터 머신 (OC-SVM)을 이용하여 직접적으로 레벨 셋을 추정한다. 이때 다양한 레벨 값에 대해 OC-SVM 학습을 반복해야 하는데, OC-SVM 솔루션 path 알고리즘을 통해 빠른 시간 안에 모든 레벨값에 해당하는 레벨 셋를 추정할 수 있다.
본 논문에서는 3차원 볼륨영상에서 객체를 빠르게 분할하고 동시에 대화식으로 분할과정을 가시화하기 위하여 그래픽 하드웨어를 사용한 레벨-셋 방법을 제안한다. 이를 위하여 첫째, GPU 내에서 효율적 연산을 수행하기 위해 메모리 관리방법을 제안한다. 이는 GPU 내 텍스쳐 메모리 형식에 적합하게 데이터를 패킹하고, CPU의 주메모리와 GPU의 텍스쳐 메모리를 관리하는 방법을 제시한다. 둘째, GPU 내에서 레벨-셋 값을 갱신하는 과정을 9가지 경우로 나누어 연산을 수행하게 함으로써 연산의 효율성을 높힌다. 셋째, front의 변화를 대화식으로 확인하고, 파라미터 변경에 따른 분할 과정을 효과적으로 측정하기 위하여 그래픽 하드웨어 기반 빠른 가시화 방법을 제안한다. 본 논문에서는 제안방법을 평가하기 위하여 3차원 폐 CT 영상데이터를 사용하여 육안평가를 수행하고, 기존 소프트웨어 기반 레벨-셋 방법과 수행시간 측면에서 비교 분석한다. 본 제안방법은 소프트웨어 기반 레벨-셋 방법보다 빠르게 영상을 분할하고 동시에 가시화함으로써 데이터 량이 많은 의료응용에 효율적으로 적용이 가능하다.
능동 개체 윤곽 추출의 대표적인 방법은 스네이크(Snake)와 레벨 셋(Level Set) 기술이다. 일반적으로 스네이크는 속도는 빠르나 개체 위상을 처리하는 데 제약이 있다. 그러나 레벨 셋은 속도는 느리지만 개체 위상에 관계없이 잘 처리할 수 있는 장점이 있다. 본 논문에서는 빠르고 복잡한 위상을 처리하기 위해 두 방법의 장점을 이용한 알고리즘을 제안한다. 알고리즘은 2단계로 구성된다. 첫 번째 단계는 스네이크를 사용하여 빠르게 개체의 대략적인 윤곽을 추출한 후 레벨 셋을 두 번째 적용하여 복잡한 개체 윤곽을 정확하게 추출한다. 제안한 알고리즘은 다양한 위상을 갖는 5개의 이진영상 및 2개의 자연영상에 적용하여 속도 및 윤곽 추출이 개선된 것을 보여 준다.
본 논문에서는 실시간 멀티미디어 데이터를 위한 효율적인 버퍼 교체 기법을 제안한다. 제안하는 기법은 실시간 특성을 고려하기 위해 다단계의 우선순위 레벨을 갖는다. 각 우선순위 레벨은 처음 참조된 데이터를 위한 콜드 셋(cold set)과 재 참조된 데이터를 위한 핫 셋(hot set)으로 구분된다. 희생 데이터 선정 작업은 버퍼 할당을 요구하는 트랜잭션의 우선순위 레벨보다 낮은 레벨만을 대상으로 콜드 셋의 최하위 레벨부터 핫 셋의 최상위 레벨까지 순차적으로 수행된다. 콜드 셋의 각 레벨에서는 가장 큰 미디어부터 교체 대상으로 선정하고, 핫 셋의 각 레벨에서는 가장 긴 참조 간격을 갖는 미디어부터 선정한다. 이로 인해 한정된 버퍼 공간에 많은 수의 인기 있는 미디어를 오랫동안 유지시킬 수 있으므로 버퍼 히트 비율이 증가되고, 많은 수의 서비스 요청을 처리할 수 있게 되어 전체적인 시스템 성능은 향상된다. 제안하는 기법에 대한 성능 평가에서는 Priority-Hints 기법을 대상으로 버퍼 히트 비율 및 트랜잭션의 마감시간 초과 비율을 비교한다. 이를 통해 기존의 기법들보다 제안하는 기법의 성능이 뛰어남을 보인다.
본 논문에서는 볼륨 의료영상 분할에 대한 기존의 레벨 셋 기법과 제안하는 방법의 성능을 비교하고자 한다. 기존의 방법들은 영역의 정보만을 이용하여 분할을 시행하므로, 영상의 종류에 따라서 정확한 분할을 못한 경우가 있다. 따라서 새롭게 제안하는 방법은 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 에지 정보와 영역 정보를 함께 이용한다. 에지 정보는 레벨 셋의 곡면이 객체의 표면에 잘 도달할 수 있도록 해주는 기울기 벡터장을 이용하고, 영역 정보는 각 영역에서 픽셀의 밝기 값을 가우시안 분포를 이용하여 통계적 모델로 적합시킴으로써 영상의 분할에 적용하였다. 또한, 곡면 주변 잡음의 영향을 최소화 시켜주는 정규화 항을 사용한다. 기존의 레벨 셋 기반의 방법들과 제안한 방법의 성능 평가를 위하여 실제 볼륨 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과의 비교를 통하여 제안된 방법의 우수성을 입증한다.
본 연구에서는 노이즈를 제거하고 자연 영상에서 자동으로 꽃을 분할하는 후처리방법을 제시한다. 레벨 셋 알고리즘을 이용한 자연영상 꽃 분할에서는 레벨 셋이 에지 정보에만 의존하기 때문에 기대하지 않았던 분리된 노이즈들이 발생한다. 실험 결과는 제안 방법이 꽃 영역과 배경 영역의 많은 노이즈를 성공적으로 제거하였음을 보여준다.
본 논문에서는 레벨 셋 방법을 이용하여 영상분할을 수행하는데 필요한 새로운 하이브리드 속도함수를 제안한다. 새롭게 제안하는 속도함수는 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 영역정보와 윤곽선정보를 함께 이용한다. 영역정보는 관심이 있는 물체영상내의 픽셀들의 밝기에 대한 확률분포의 정보를 이용하였고, 윤곽선정보는 영상의 에지의 기울기로부터 주어지는 기울기 벡터장을 이용하였다. 제안된 방법을 이용한 분할결과의 정확성을 확인하기 위하여 가상영상과 실제 사용되는 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과를 통하여 제안된 방법의 우수성을 입증하였다.
본 논문에서는 비디오의 피처레벨 분석을 통해 비디오의 장면 구성 특징을 파악하고, 그에 적응적으로 대표 프레임을 선택하는 방법을 제안한다. 제안된 방법으로 생성된 캡셔닝 피처는 비디오를 잘 요약하고, 이를 통해 효과적인 캡셔닝을 수행할 수 있다. 기존 비디오 캡셔닝 연구에서는 비디오의 장면 구성을 고려하지 않고 단순 등간격으로 프레임 추출을 통하여 비디오 캡셔닝을 수행하였다. 이는 다양한 장면의 모임으로 이루어진 비디오의 특성을 고려하지 않은 방법으로, 경우에 따라 주요 장면을 놓치거나, 불필요하게 중복된 프레임을 선택하는 문제가 발생한다. 본 논문에서는 비디오의 피처레벨 분석을 통해 비디오의 구성 특징을 파악하고, 이를 고려해 적응적으로 주요 프레임을 추출하여 이와 같은 문제를 해결하여 비디오 캡셔닝 에서의 성능향상을 보인다. 제안 알고리즘을 이용하여 생성된 피처는 비디오를 잘 요약하여 비디오 캡셔닝 수행 시, MSVD 데이터 셋에서 4 개의 평가지표에 대해 약 0.78%의 성능향상을 보였고, MSR-VTT 데이터 셋에서 약 0.6%의 성능향상을 보였다.
무릎 관절 연골은 두께가 얇아 대부분 무릎 질환의 원인이 되고 있다. 그러므로 무릎 자기공명영상에서 관절 연골 분할은 무릎 질환의 정확한 진단을 위한 필수조건이다. 특히 수동이 아닌 전자동 방식으로 무릎 관절 연골을 분할하여야만 효과적인 무릎 질환 진단을 할 수 있다. 본 논문에서는 뇌 자기공명영상에서 대표적으로 사용되는 레벨 셋 기반의 영상 분할 기법을 분석하여 무릎 자기공명영상에 적용 시 문제점을 파악하고 이를 해결함으로써, 무릎 자기공명영상에 레벨 셋 기반 영상분할 방식을 적용하였다. 이는 본 논문에서 제안하는 분할기법을 사용할 경우 무릎 관절 연골 분할에 대한 모든 과정이 전자동화 되어 기존 반자동화 방식보다 빠른 처리가 가능하며, 3차원 형상화를 통해 보다 정확한 진단에 도움을 줄 수 있다. 또한 우리는 제안하고 있는 분할기법이 기존 대표적인 무릎 관절 분할보다 더 높은 정확도를 갖는 것을 실험을 통해 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.