• 제목/요약/키워드: 런아웃

검색결과 80건 처리시간 0.028초

실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석 (NRRO analysis of HDD spindle ball bearings using the measured geometric imperfection)

  • 김영철;최상규;윤기찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.369-374
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. NRRO of a ball bearing is analyzed by using the measured waviness data. It is concluded that dominant components of radial vibrations are ${\Large}f_c\;and\;2{\Larg}f_b{\pm}{\Large}f_c$, and dominant component of axial vibrations is $2{\Large}f_b$. These are generated by the size error and the second waviness of the balls.

  • PDF

밀링 공정시 공구 파손 검출 (I) -제1편 : 공구 파손 지수의 도출- (Tool Fracture Detection in Milling Process (I) -Part 1 : Development of Tool Fracture Index-)

  • 김기대;오영탁;주종남
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.100-109
    • /
    • 1998
  • In order to increase productivity through unmanned machining in CNC milling process, in-process tool fracture detection is required. In this paper, a new algorithm for tool fracture detection using cutting load variations was developed. For this purpose, developed were tool condition vector which is dimensionless indicator of cutting load and tool fracture index (TFI) which represents magnitude of tool fracture. Through cutting force simulation, tool fracture index was shown to be independent of tool run-outs and cutting condition variations. Using tool fracture index, the ratio of the tool fracture to feed per tooth could be indentified.

  • PDF

커터 런 아웃과 가공표면 생성에 관한 연구 (A Study on the Charactistics of Machined Surface due to Cutter Runout)

  • 황준;이기용;신승춘;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.873-877
    • /
    • 1997
  • This paper presents experimental results to know the charcteristics of machined surface due to cutter runout. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear, amplification of force variation and hence enargement vibration amplitude. To develop in-proess cutter runout compensation system, set-up the micro-positoning mechanism which is based on piezoelectric translator embeded in the work holder to manipulate the depth of cut in real-time. And feasibility test of system was done under the various experimental cutting conditions. This results provide lots of information to build-up the precision machining technology.

  • PDF

디스크 정렬불량에 기인한 브레이크 스퀼소음 (Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

생산라인용 자동차 변속기용 헬리컬 기어 검사 장치에 관한 연구 (A Study on the Helical Gear Inspection System for Vehicle Transmission Gear Manufacturing Line)

  • 이민기;이응석;김기남;김광중
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.237-243
    • /
    • 2010
  • 본 논문은 자동차 변속기의 헬리컬기어 검사 장치에 대한 것이다. 기어 프로파일 전용 검사설비는 시간이 많이 소요되므로 생산라인용으로 적합하지 못하다. 본 논문에서 사용된 마스트기어를 이용하여 생산된 기어와 비교하여 방법은 보다 경제적이며 효율적이다. 본 논문에 사용된 3가지 기어검사 파라미터는 nick, 흔들림(run-out) 및 PCD (pitch circle diameter) 등이다. 기어검사장치의 측정정밀도에 영향을 미치는 요소들에 대해서도 또한 언급되었다. 이 장치는 현재 국내에서 전량 수입되는 기어 생산라인용 설비에 실제적으로 사용될 것이다.

감속기 내부 기어의 가공정밀도와 구동간 소음의 연관특성에 관한 연구 (Analysis of the Relation Between Machining Accuracy of Internal Gear and Noise in Reduction Gears)

  • 박성필;김우형;정진태
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.537-543
    • /
    • 2012
  • 본 연구는 운전조건 하에서 감속기 내부기어의 가공정밀도와 소음의 연관 특성에 관한 실험적 연구이다. 이를 위하여 유성기어열로 이루어진 감속기를 제작하였으며, 내부 기어는 정밀도를 다르게 가공한 기어로서 4 세트를 제작하여 비교 실험하였다. 감속기에 대한 소음 및 진동 신호는 신호분석법에 의해 채집되었으며, 정지상태로부터 운전 가능 최고 속도까지 균등하게 증속하며 신호를 채집하였다. 또한 소음 레벨은 소음계를 이용하여 측정하여 비교하였다. 기어의 가공정밀도에 대한 평가는 한국 산업기술 시험원(ktl)에 의뢰하여 일본공업규격(JIS)에 준하여 객관적으로 평가되었으며, 이를 소음, 진동 신호와 함께 비교 분석하였다.

볼 엔드밀 가공의 유연 절삭력 모델에 관한 연구 (A Study on the Flexible Cutting Force Model in the Ball End Milling Process)

  • 최종근;강윤구;이재종
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.44-52
    • /
    • 2003
  • This research suggests a cutting force model for the ball end milling processes. This model includes the effect of tool run out and tool deflection. In the proposed model, the flutes of ball end mills are considered as series of infinitesimal elements and each cutting edge is assumed to be straight for the analysis of the oblique cutting process, in which the small cutting edge element has been analyzed as an orthogonal cutting process n the plane including the cutting velocity and the chip-flow vector. Therefor, the cutting forces can be calculated through the model using the orthogonal cutting data obtained from the orthogonal cutting test. In order to enhance the performance of the model, the flutes of ball end mill are defined to keep geometric consistency at the peak of the ball part and the junction with the end mill part. The divided infinitesimal cutting edges are regulated to be even lengths. Some experiments show the validity of the developed model in the various cutting coalitions.

평 엔드밀을 이용한 평면가공에서의 가공면 형성기구 (Plane Surface Generation with a Flat End Mill)

  • 류시형;김민태;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구 (A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling)

  • 김상진;배명일;김형철;김기수
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.

고속 정밀 가공기의 공구셋업 측정기술 (Tool-Setup Measurement Technology of High Speed Precision Machining Tool)

  • 박경택;신영재;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF