Annual Conference on Human and Language Technology
/
2020.10a
/
pp.357-362
/
2020
자연어 처리 응용 시스템이 패러프레이즈 표현을 얼마나 정확하게 포착하는가에 따라 응용 시스템의 성능 측면에서 차이가 난다. 따라서 자연어 처리의 응용 분야 전반에서 패러프레이즈 표현에 대한 중요성이 커지고 있다. 시스템의 성능 향상을 위해서는 모델을 학습시킬 충분한 말뭉치가 필요하다. 특히 이러한 패러프레이즈 말뭉치를 구축하기 위해서는 정확한 패러프레이즈 추출이 필수적이다. 따라서 본 연구에서는 패러프레이즈를 추출을 위한 언어 자원으로 키프레이즈 데이터셋을 제안하고 이를 기반으로 유사한 의미를 전달하는 패러프레이즈 관계의 문장을 추출하였다. 구축한 키프레이즈 데이터셋을 패러프레이즈 추출에 활용한다면 본 연구에서 수행한 것과 같은 간단한 방법으로 패러프레이즈 관계에 있는 문장을 찾을 수 있다는 것을 보였다.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.135-142
/
2009
Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. The major techniques used in data mining are mining association rules, classification and clustering. Since these techniques are used individually, it is necessary to develop the methodology for rule extraction using a process of integrating these techniques. Rule extraction techniques assist humans in analyzing of large data sets and to turn the meaningful information contained in the data sets into successful decision making. This paper proposes an autonomous method of rule extraction using clustering and rough set theory. The experiments are carried out on data sets of UCI KDD archive and present decision rules from the proposed method. These rules can be successfully used for making decisions.
Journal of the Korea Society of Computer and Information
/
v.13
no.2
/
pp.113-119
/
2008
The World Wide Web is a dynamic collection of pages that includes a huge number of hyperlinks and huge volumes of usage informations. The resulting growth in online information combined with the almost unstructured web data necessitates the development of powerful web data mining tools. Recently, a number of approaches have been developed for dealing with specific aspects of web usage mining for the purpose of automatically discovering user profiles. We analyze sequence data, such as web-logs, protein sequences, and retail transactions. In our approach, we propose the clustering algorithm for sequence data using rough set theory. We present a simple example and experimental results using a splice dataset and synthetic datasets.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2004.05b
/
pp.552-556
/
2004
This paper surveys the design of the adaptive information filtering agents to retrieve the useful information within a large scale database. As the information retrieval through the Internet is generalized, it is necessary to extract the useful information satisfied the user's request condition to reduce the seeking time. For the first, this module is designed by the Rough reduct to generate the reduced minimal knowledge database considered the users natural query language in a large scale knowledge database, and also it is executed the soft computing by the fuzzy composite processing to operate the uncertain value of the reduced schema domain.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.527-530
/
2019
최근 각 산업분야에서 대화 시스템과 챗봇 기술의 업무로의 도입이 활발해짐에 따라 한국어 패러프레이즈 기술에 대한 관심이 높아지고 있다. 기존에는 연구와 평가 목적으로 규모는 작아도 잘 정제된 평가셋을 만드는 것이 중요했으나, 최근에는 기계학습 기술의 발달로 학습을 위한 일정 수준의 품질을 보장하는 대량의 말뭉치를 빠르게 확보하는 방법이 중요해지고 있다. 본 논문에서는 현재 수행하고 있는 한국어 패러프레이즈 말뭉치 구축 경험과 방법에 대해 소개한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.49-52
/
1998
Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.
Journal of Korean Institute of Industrial Engineers
/
v.33
no.2
/
pp.183-190
/
2007
We present a new decision tree classification algorithm using rough set theory that can induce classification rules, the construction of which is based on core attributes and relationship between objects. Although decision trees have been widely used in machine learning and artificial intelligence, little research has focused on improving classification quality. We propose a new decision tree construction algorithm that can be simplified and provides an improved classification quality. We also compare the new algorithm with the ID3 algorithm in terms of the number of rules.
A proportional intergral (PI) control strategy is commonly used for constant current and extinction angle control in a HVDC (High Voltage Direct Current) system. A PI control strategy is based on a stactic design where the gains of a PI controller are fixed. Since the response of a HVDC plant dynamically changes with variations in the operation point a PI controller performance is far from optimum. The contribution of this paper is the presentation of the design of a rough set based, fuzzy adaptive control scheme. Experimental results that compare the performance of the adaptive control and PI control schemes are also given.
Journal of the Korea Society of Computer and Information
/
v.17
no.12
/
pp.179-185
/
2012
This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved, compared to the existing SVM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.