• 제목/요약/키워드: 랭킨사이클

검색결과 132건 처리시간 0.028초

저온열원 활용을 위한 유기랭킨사이클의 열적 특성에 관한 연구 (Study on the Thermal Characteristics of Organic Rankine Cycles for Use of Low-Temperature Heat Source)

  • 진재영;김경훈
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.191-194
    • /
    • 2011
  • Low-grade waste heat has generally been discarded in industry due to lack of efficient recovery methods. In recent years, organic Rankine cycle(ORC) has become a field of intense research and appears as a promising technology for conversion of heat into useful work of electricity. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal efficiency.

  • PDF

유기랭킨사이클(ORC)을 위한 주전열면 열교환기의 채널주름비에 따른 유동 및 열전달특성 (Experimental Investigation on the Performance of a Scroll Expander for an Organic Rankine Cycle)

  • 성민제;안준
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.158-162
    • /
    • 2014
  • A series of numerical simulation has been carried out to study thermo-hydraulic characteristics of a primary surface type heat exchanger, which is designed for the evaporator and condenser of a geothermal ORC. Working fluid is geothermal water at hot side and R-245fa, which is a refrigerant designed for ORC, at cold side. Amplitude ratio of the channel and Reynolds number are considered as design parameters. Nusselt number is presented for the Reynolds number ranging from 50 to 150 and compared to analytic solutions. The result shows that higher amplitude ratio channel gives better heat transfer performance within the range of investigation.

초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성 (Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation)

  • 백영진;김민성;장기창;이영수;나호상
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1343-1349
    • /
    • 2011
  • 본 연구에서는 $100^{\circ}C$의 저온 열원을 이용하여 구동되는 랭킨 동력 사이클에 대하여, HFC-134a를 이용한 아임계 운전을 할 경우의 출력과 HFC-125 를 이용한 초월임계 운전을 할 경우의 출력을 서로 비교함으로써, 초월임계 운전에 의한 출력 향상 가능성을 연구하였다. 서로 다른 두 사이클들의 출력을 공정하게 비교하기 위하여, 각 사이클들을 3 개의 설계인자를 이용하여 최적화 하였다. 이 때, 보다 현실적인 결과를 위하여 기존의 연구와는 달리, 열교환 과정에서 작동유체의 열전달 및 압력강하 특성을 고려하였다. 시뮬레이션 결과, HFC-125 초월임계 사이클의 출력이 HFC-134a 아임계 사이클의 출력에 비해 본 연구의 시뮬레이션 조건 하에서 9.4% 향상 될 수 있음을 보였다.

유기랭킨사이클의 성능에 미치는 내부열교환기의 영향 (Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

냉매(R245fa)를 이용한 유기랭킨 사이클에 관한 연구 (A Study on the Organic Rankine Cycle Using R245fa)

  • 조수용;조종현;김진환
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.10-17
    • /
    • 2013
  • The organic Rankine cycle has been widely used to convert the renewable energy such as the solar energy, the geothermal energy, or the waste energy etc., to the electric power. Some previous studies focused to find what kind of refrigerant would be a best working fluid for the organic Rankine cycle. In this study, R245fa was chosen to the working fluid, and the cycle analysis was conducted for the output power of 30kW or less. In addition, properties (temperature, pressure, entropy, and enthalpy etc.) of the working fluid on the cycle were predicted when the turbine output power was controlled by adjusting the mass flowrate. The configuration of the turbine was a radial-type and the supersonic nozzles were applied as the stator. So, the turbine was operated in partial admission. The turbine efficiency and the optimum velocity ratio were considered in the cycle analysis for the low partial admission rate. The computed results show that the system efficiency is affected by the partial admission rate more than the temperature of the evaporator.

유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향 (Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석 (Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source)

  • 김경훈;배유근;정영관;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.148-154
    • /
    • 2018
  • This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.