• 제목/요약/키워드: 랭크부스트

검색결과 2건 처리시간 0.015초

스마트폰 상에서의 개인화 학습을 위한 랭크부스트 알고리즘 (RankBoost Algorithm for Personalized Education of Chinese Characters on Smartphone)

  • 강대기;장원태
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.70-76
    • /
    • 2010
  • 본 논문에서는 스마트폰 상에서 한자 학습 시스템을 랭크부스트 알고리즘을 이용하여 개인화하는 방법에 대해 논하고자 한다. 한자 학습의 일반적인 환경을 보면, 학습자는 급수에 따라 일정한 개수의 학습할 한자들이 있으며, 학습이 진행됨에 따라 그 한자들 중 자신이 잘 틀리는, 즉 자신에게는 난이도가 높은 한자들이 생기게 된다. 본 논문에서는 이러한 난이도의 측정을 랭크부스트 알고리즘을 통해 구현하였다. 알고리즘은 초기에는 모든 한자들에 대해 동일한 가중치를 가지고 학습을 시작하게 하지만, 사용자가 자주 틀리는 한자에 대해서는 가중치를 높여 나간다. 본 논문에서 제안하는 랭크부스트 알고리즘은 학습자에 개인화된 난이도 순위를 매겨줌으로, 학습자가 어려운 한자에 더 자주 노출되게 한다면 학습 효과를 높일 수 있다.

Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm)

  • 박승현;조성원
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.