• Title/Summary/Keyword: 랜킨 소오스 방법

Search Result 2, Processing Time 0.019 seconds

Comparative Study on the Radiation Techniques for the Problem of Floating Body Motion with Forward Speed (전진 속도를 가지는 부유체 운동 문제에 대한 방사기법 비교 연구)

  • Oh, Seunghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.396-409
    • /
    • 2019
  • In this paper, a comparative study on the radiation techniques for the motion analysis of the three dimensional floating structure with the forward speed was carried out. The Sommerfeld radiation condition, the damping technique, and the point shift technique were used for the comparative study. Radiated wave patterns and hydrodynamic coefficients of the heave motion of floating structure with the forward speed were compared and analyzed. The characteristics and limitations of each radiation technique were analyzed through the calculation results. To overcome the limitations of conventional radiation techniques, the hybrid radiation technique combining the Sommerfeld radiation condition with the damping technique was proposed. It is confirmed that the proposed method, the Hybrid radiation technique, improves the limitation of the speed range and the dissipation of the wave of the conventional radiation technique. The motion analysis code of the three dimensional floating structure with the forward speed based on the Rankine source method with hybrid radiation technique was developed. In order to validate the developed code, hydrodynamic analyses were carried and compared with published experiments.

Frequency Domain Analysis for Hydrodynamic Responses of Floating Structure using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식 방법을 이용한 부유식 구조물의 유체동역학적 거동에 대한 주파수영역 해석)

  • Oh, Seunghoon;Jung, Dongho;Cho, Seok-kyu;Nam, Bo-woo;Sung, Hong Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.11-22
    • /
    • 2019
  • In this paper, a Rankine source method is applied and validated to analyze the hydrodynamic response of a three-dimensional floating structure in the frequency domain. The boundary value problems for radiation and diffraction problem are solved by using a desingularized indirect boundary integral equation method (DIBIEM). The DIBIEM is simpler and faster than conventional methods based on the numerical surface integration of Green's function because the singularities of Green's function are located outside of fluid regions. In case of floating structure with complex geometry, it is difficult to desingularize the singularities of Green's function consistently. Therefore a mixed approach is carried out in this study. The mixed approach is partially desingularized except singularities of the body. Wave drift loads are calculated by the middle-field formulation method that is mathematically simple and has fast convergence. In order to validate the accuracy of the developed program, various numerical simulations are carried out and these results are analyzed and compared with previously published calculations and experiments.