• Title/Summary/Keyword: 라틴하이퍼큐브 샘플링

Search Result 23, Processing Time 0.02 seconds

Design Optimization of a Channel Roughened by Dimples Using Weighted Average Surrogate Model (가중평균 대리모델을 사용한 딤플 유로의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Staggered dimples printed on opposite walls of an internal cooling channel are formulated numerically and optimized to enhance heat transfer performance. Nusselt number and friction factor based objectives are considered and a weighted average surrogate model is used to approximate the data generated by numerical simulation. The dimpled channel shape is defined by three geometric design variables, and the design point within design space are selected using Latin hypercube sampling. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective. By the optimization, the objective function value is improved largely and heat transfer rate is increase much higher than pressure loss increase due to shape deformation. Channel with vertically non-symmetric optimum dimples is tested and found that the best appears if dimples on opposite wall are displaced by one quarter of dimple spacing.

A Conservative Safety Study on Low-Level Radioactive Waste Repository Using Radionuclide Release Source Term Model (선원항 모델을 사용한 저준위 방사성폐기물 처분장의 보수적인 안전성고찰)

  • Kim, Chang-Lak;Lee, Myung-Chan;Cho, Chan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 1993
  • A simplified safety assessment is carried out on rock-cavern type disposal of LLW using the analytical repository source term (REPS) model. For reliable prediction of the leach rates for various radionuclides, degradation of concrete structures, corrosion rate of waste container, degree of corrosion on the container surface, and the characteristics of radionuclides are considered in the REPS model. The results of preliminary assessment show that Cs-137, Ni-63, and Sr-90 are dominant. For the parametric uncertainty and sensitivity analysis, Latin hypercube sampling technique and rank correlation technique are applied. The results of the potential public health impacts show that radiological dose to intruder in the worst case scenario will be negligible and that more attention should be given to near-field performance.

  • PDF

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

A Simulation-based Optimization for Scheduling in a Fab: Comparative Study on Different Sampling Methods (시뮬레이션 기반 반도체 포토공정 스케줄링을 위한 샘플링 대안 비교)

  • Hyunjung Yoon;Gwanguk Han;Bonggwon Kang;Soondo Hong
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • A semiconductor fabrication facility(FAB) is one of the most capital-intensive and large-scale manufacturing systems which operate under complex and uncertain constraints through hundreds of fabrication steps. To improve fab performance with intuitive scheduling, practitioners have used weighted-sum scheduling. Since the determination of weights in the scheduling significantly affects fab performance, they often rely on simulation-based decision making for obtaining optimal weights. However, a large-scale and high-fidelity simulation generally is time-intensive to evaluate with an exhaustive search. In this study, we investigated three sampling methods (i.e., Optimal latin hypercube sampling(OLHS), Genetic algorithm(GA), and Decision tree based sequential search(DSS)) for the optimization. Our simulation experiments demonstrate that: (1) three methods outperform greedy heuristics in performance metrics; (2) GA and DSS can be promising tools to accelerate the decision-making process.

Fairing Design Optimization of Missile Hanger for Drag Reduction (유도탄 행거 항력 저감을 위한 페어링 형상 최적화)

  • Jeong, Sora
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

The Effects of Design Parameter Uncertainty of the Shock Absorber on the Performance of Suspension System (충격 흡수기의 설계 파라미터 불확실성이 현가 장치 성능에 미치는 영향)

  • Lee, Choon-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.949-958
    • /
    • 2020
  • The functions of shock absorbers are to dampen body, suspend motions, dissipate impact energy, and control tire force variation. During the operation, hydraulic oil is passed between the chambers via a flow restrictions. Therefore the damping force characteristics of shock absorber is determined by the characteristics of orifices and flow restrictions. The uncertainty in design variable affects the performance of suspension system strongly. But, the researches about the influence of uncertainty in design variable such as a fluid restriction's property of shock absorber, on the suspension system performance was hardly ever proposed. In this paper, we used statistical method of Latin Hypercube sampling, and the effects of design variables uncertainty on the performance of suspension system was presented.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

Suggestions for Enhancing Sampling-Based Approach of Seismic Probabilistic Risk Assessment (샘플링기반 지진 확률론적 리스크평가 접근법 개선을 위한 제언)

  • Kwag, Shinyoung;Eem, Seunghyun;Choi, Eujeong;Ha, Jeong Gon;Hahm, Daegi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • A sampling-based approach was devised as a nuclear seismic probabilistic risk assessment (SPRA) method to account for the partially correlated relationships between components. However, since this method is based on sampling, there is a limitation that a large number of samples must be extracted to estimate the results accurately. Thus, in this study, we suggest an effective approach to improve the existing sampling method. The main features of this approach are as follows. In place of the existing Monte Carlo sampling (MCS) approach, the Latin hypercube sampling (LHS) method that enables effective sampling in multiple dimensions is introduced to the SPRA method. In addition, the degree of segmentation of the seismic intensity is determined with respect to the final seismic risk result. By applying the suggested approach to an actual nuclear power plant as an example, the accuracy of the results were observed to be almost similar to those of the existing method, but the efficiency was increased by a factor of two in terms of the total number of samples extracted. In addition, it was confirmed that the LHS-based method improves the accuracy of the solution in a small sampling region.

High-Efficiency Design of a Ventilation Axial-Flow Fan by Using Weighted Average Surrogate Models (가중평균대리모델을 이용한 환기용 축류송풍기의 고효율 최적설계)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Lee, Chan;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.763-771
    • /
    • 2011
  • An optimization procedure for the design of a ventilation axial-flow fan is presented in this paper. Flow analyses of the preliminary fan are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations via a finite-volume solver with the shear-stress transport turbulence model as a turbulence closure. Three variables, the hub-to-tip ratio and the stagger angles at the mid and tip spans, are selected for the optimization. The Latin-hypercube sampling method as a design-of-experiments technique is used to generate twenty-five design points within the design space. and the weighted average surrogate models, WTA1, WTA2, and WTA3, are applied for find optimal designs. The results show that the efficiency is considerably enhanced.