• Title/Summary/Keyword: 라틴방격분석

Search Result 7, Processing Time 0.022 seconds

Development of Incident Detection Method for Interrupted Traffic Flow by Using Latin Square Analysis (라틴방격분석법을 이용한 단속류도로에서의 유고감지기법 개발)

  • Mo, Mooki;Kim, Hyung Jin;Son, Bongsoo;Kim, Dae Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.623-631
    • /
    • 2011
  • In this study, a new method which can detect incidents in interrupted traffic flow was suggested. The applied method of detecting the incident is the Latin Square Analysis Method by using traffic traits. In the Latin Square Analysis, unlike other previously tried methods, the traffic situation was analyzed, this time considering the changes in traffic traits for each lane and for each time period. The data used in this study were the data observed in the actual field with fine weather. The traffic volumes, the vehicle speed and the occupancy rate were collected on the interrupted flow road. The data were collected in normal and incident situations. The incidents occurred on the second lane, the time of persistent incidents was set to 10 minutes. The Latin Square Analyses were performed using the collected data with the traffic volume, with the vehicle speed or with the occupancy rate. As a result in this study, in case of detecting the traffic situations with Latin Square Analysis, it will be more successful to apply traffic volume to detect the traffic situations than to apply other factors.

Power study for 4 × 4 graeco-latin square design (4 × 4 그레코라틴방격모형의 검정력 연구)

  • Choi, Young-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.683-691
    • /
    • 2012
  • In $4{\times}4$ graeco-latin square design, powers of rank transformed statistic for testing the main effect are superior to powers of parametric statistic without regard to the effect structure with equally or unequally spaced effect levels as well as the type of population distributions such as exponential, double exponential, normal and uniform distribution. As numbers of block effect or effect sizes are decreased, powers of rank transformed statistic are much higher than powers of parametric statistic. In case that block effects are smaller than a main effect or one block effect is higher than other block effects, powers of rank transformed statistic are much higher than powers of parametric statistic in $4{\times}4$ graeco-latin square design with three block effects and one main effect.

Power analysis for 3 ${\times}$ 3 Latin square design (3 ${\times}$ 3 라틴방격모형의 검정력 분석)

  • Choi, Young-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.401-410
    • /
    • 2009
  • Due to the characteristics of 3 ${\times}$ 3 Latin square design which is composed of two block effects and one main effect, powers of rank transformed statistic for testing the main effect are very superior to powers of parametric statistic without regard to the type of population distributions. By order of when all three effects are fixed, when on one block effect is random, when two block effects are random, the rank transform statistic for testing the main effect shows relatively high powers as compared with the parametric statistic. Further when the size of main effect is big with one equivalent size of block effect and the other small size of block effect, powers of rank transformed statistic for testing the main effect demonstrate excellent advantage to powers of parametric statistic.

  • PDF

High Speed Machining of the thin surface parts using liquid metal and selection of machining condition by Latin Square Method (Liquid metal을 이용한 고속 양면 가공 및 라틴 방격법에 의한 최적 가공 조건 선정)

  • 임표;이희관;양균의
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.433-438
    • /
    • 2004
  • The rapid machining of prototypes plays an important role in product process. Rapid Prototyping(RP) is the widespread technology to produce prototype. But, it have many problems such as shrinkage, deformation and formation occurred by hardening of resin and stair shaping, On the contrary, high speed machining(HSM) technology has many advantages such as good quality, low cost and rapid machining time. Moreover, it is possible to use the material of original product. This paper presents manufacture of trial product by HSM and optimization of machining condition for high productivity in the view of manufacturing time and average error. For example, propeller is machined by the surface machining of thin surface parts. Experiments are designed of machining conditions by Latin Square method and machining condition is optimized and selected by ANOVA

  • PDF

High Speed Machining of the thin surface parts using liquid metal and selection of machining condition by Latin Square Method (Liquid metal을 이용한 고속 양면 가공 및 라틴 방격법에 의한 최적가공 조건 선정)

  • Lim, Pyo;Lee, Hi-Koan;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.99-106
    • /
    • 2005
  • This paper presents manufacture of mock-up by HSM and optimization of machining condition for high productivity in the view of manufacturing time and accuracy. The rapid machining of prototypes plays an important role in building mock-up. Rapid Prototyping(RP) is a technology to make prototype. But, it have many problems such as shrinkage. deformation and formation occurred by hardening of resin and stair shaping. On the contrary, high speed machining(HSM) technology has many advantages such as good quality, low cost and rapid machining time. HSM and RP is compared for machining efficiency. Experiments are designed by Latin Square Method and machining condition is optimized and selected by ANOVA. For example, propeller is machined by the surface machining of thin surface parts.

Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames (철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.

Visualization for Experimental Designs (실험계획의 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.893-904
    • /
    • 2011
  • The lecture of the experimental designs consists of two main part-experimental designs and model analysis. Mostly, the progress of the visualization has been made on a model analysis. As the visualization of experimental designs, we can consider the visualization of Latin squares, supersaturated designs, and balanced incomplete block designs. We can propose the design plots as well as use the scatterplots and the scatterplot matrices for the visualization of experimental designs. Through the visualization of experimental designs, we can use the synergy effect in teaching the lecture of the experimental designs.