• Title/Summary/Keyword: 라이트 필드

Search Result 35, Processing Time 0.023 seconds

Fast Joint Normal Estimation Method for V-PCC Encoder (V-PCC 부호화기를 위한 고속 결합 법선 추정 방법)

  • Kim, Yong-Hwan;Kim, Yura
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.246-249
    • /
    • 2022
  • 최근 들어 세계적으로 크게 관심을 받는 메타버스 및 몰입형(가상현실, 확장현실, 및 라이트필드) 콘텐츠 서비스의 응용 범위를 확대하기 위해서는 3D 객체의 실시간 전송을 위한 압축 기술이 필요하다. ISO/IEC 23090 MPEG-I Part 5 로 2021 년 표준화 완료된 V-PCC (Video-based Point Cloud Compression)는 이러한 산업계의 관심 및 필요에 의해서 국제 표준화된 동적 3D 포인트 클라우드 객체 부호화 기술이다. V-PCC 기술의 압축 성능은 기존 산업계 기술에 비해 매우 우수하나, 부호화기의 연산 복잡도가 매우 높다는 단점을 가지고 있다. 본 논문에서는 V-PCC 부호화기에서 가장 높은 연산 복잡도를 갖는 법선 추정 알고리즘의 결합 고속화 기법을 제안한다. 법선 추정은 2 개의 알고리즘으로 구성되어 있다. 첫번째는 "방향을 무시하는 법선 추정 알고리즘(normal estimation)"이고, 두번째는 첫번째 알고리즘에서 추정된 법선들을 대상으로 하는 "법선 방향 추정 알고리즘(normal orientation)"이다. 본 논문에서 제안하는 고속화 기법은 2 개 알고리즘을 결합하여 첫번째 법선 추정 알고리즘에서 획득한 부가 정보를 두번째 법선 방향 추정 알고리즘에서 활용함으로써 연산량을 대폭 줄이고, 또한 법선 방향 추정 알고리즘 내의 우선순위 큐 자료구조를 변경하여 추가적인 고속화를 달성한다. 7 개 테스트 영상에 대한 실험 결과, 압축 효율 저하 없이 법선 방향 추정 알고리즘의 속도를 평균 89.2% 향상시킬 수 있다.

  • PDF

Calibration Method of Plenoptic Camera using CCD Camera Model (CCD 카메라 모델을 이용한 플렌옵틱 카메라의 캘리브레이션 방법)

  • Kim, Song-Ran;Jeong, Min-Chang;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.261-269
    • /
    • 2018
  • This paper presents a convenient method to estimate the internal parameters of plenoptic camera using CCD(charge-coupled device) camera model. The images used for plenoptic camera calibration generally use the checkerboard pattern used in CCD camera calibration. Based on the CCD camera model, the determinant of the plenoptic camera model can be derived through the relationship with the plenoptic camera model. We formulate four equations that express the focal length, the principal point, the baseline, and distance between the virtual camera and the object. By performing a nonlinear optimization technique, we solve the equations to estimate the parameters. We compare the estimation results with the actual parameters and evaluate the reprojection error. Experimental results show that the MSE(mean square error) is 0.309 and estimation values are very close to actual values.

Research and Development Trends in Three-dimensional (3D) Displays (공간표시 디스플레이 연구 및 개발 동향)

  • Cho, S.M.;Hwang, C.S.;Choi, J.H.;Kim, Y.H.;Cheon, S.H.;Choi, K.H.;Kim, J.Y.;Yang, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.65-80
    • /
    • 2020
  • In this article, we review the study trends of three-dimensional (3D) displays that can display stereoscopic images from the perspective of a display device. 3D display technology can be divided into light field, holographic, and volume displays. Light field display is a display that can reproduce the intensity and direction of light or 'ray' in each pixel. It can display stereoscopic images with less information than a holographic display and does not require coherence of the light source. Therefore, it is expected that it will be commercialized before the holographic display. Meanwhile, the holographic display creates a stereoscopic image by completely reproducing the wavefront of an image using diffraction in terms of wave characteristics of light. This technology is considered to be able to obtain the most complete stereoscopic image, and the digital holographic display using a spatial light modulator (SLM) is expected to be the ultimate stereoscopic display. However, the digital holographic display still experiences the problem of a narrow viewing angle due to the finite pixel pitch of the SLM. Therefore, various attempts have been made at solving this problem. Volumetric display is a technology that directly creates a stereoscopic image by forming a spatial pixel, which is known as a volumetric pixel, in a physical space, and has a significant advantage in that it can easily solve the problem of the viewing angle. This technology has already been tested for commercial purposes by several leading companies. In this paper, we will examine recent research trends regarding these 3D displays and near-eye display that is emerging as a significant application field of these technologies.

Studies on the Development of Liquid Chromatographic Methods for Pesticide Residues (II) : The Development of the Analytical Method for Thiocarbamates Herbicides (잔류농약의 액체 크로마토그래피 분석법 개발에 관한 연구 (II) Thiocarbamates 제초제의 잔류농약 분석법 개발)

  • Lee Dai Woon;Choi Yong Wook
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • A method for the multiresidual simultaneous analysis of 11 thiocarbamates was studied using HPLC. Thiocarbamate in Chinese cabbage was analyzed in the order of extraction, partition, and cleanup in their optimum condition. Acetone was chosen as an extracting solvent. As a partitioning solvent, the mixture of 50% methylene chloride and petroleum ether containing extremely small water content showed good recoveries of thiocarbamate from the water layer. Partition efficiency was affected by pH of the water layer; it remained almost constant under the acidic and neutral condition while decreasing under the basic condition. The comparison done in cleanup step showed that the column chromatographic method is superior to the treatment of coagulating reagent. As an absorbent, the mixture of charcoal, magnesia, and celite with the ratio of 1 : 2 : 4 gave better recoveries and also effectively removed chlorophyll. Over the total procedure, the average recoveries for thiocarbamates in Chinese cabbage were 91% at about 2 ppm fortification level within the relative standard deviation of 8%, and the minimum detection limit (MDL) was 2.2${\sim}$9.3 ng.

  • PDF

Super-resolution Reconstruction Method for Plenoptic Images based on Reliability of Disparity (시차의 신뢰도를 이용한 플렌옵틱 영상의 초고해상도 복원 방법)

  • Jeong, Min-Chang;Kim, Song-Ran;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.425-433
    • /
    • 2018
  • In this paper, we propose a super-resolution reconstruction algorithm for plenoptic images based on the reliability of disparity. The subperture image generated by the Flanoptic camera image is used for disparity estimation and reconstruction of super-resolution image based on TV_L1 algorithm. In particular, the proposed image reconstruction method is effective in the boundary region where disparity may be relatively inaccurate. The determination of reliability of disparity vector is based on the upper, lower, left and right positional relationship of the sub-aperture image. In our method, the unreliable vectors are excluded in reconstruction. The performance of the proposed method was evaluated by comparing to a bicubic interpolation method, a conventional disparity based method and dictionary based method. The experimental results show that the proposed method provides the best performance in terms of PSNR(Peak Signal to noise ratio), SSIM(Structural Similarity).