• Title/Summary/Keyword: 라쏘 회귀 머신러닝

Search Result 2, Processing Time 0.014 seconds

Machine Learning Prediction of Economic Effects of Busan's Strategic Industry through Ridge Regression and Lasso Regression (릿지 회귀와 라쏘 회귀 모형에 의한 부산 전략산업의 지역경제 효과에 대한 머신러닝 예측)

  • Yi, Chae-Deug
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.197-215
    • /
    • 2021
  • This paper analyzes the machine learning predictions of the economic effects of Busan's strategic industries on the employment and income using the Ridge Regression and Lasso Regression models with regulation terms. According to the Ridge estimation and Lasso estimation models of employment, the intelligence information service industry such as the service platform, contents, and smart finance industries and the global tourism industry such as MICE and specialized tourism are predicted to influence on the employment in order. However, the Ridge and Lasso regression model show that the future transportation machine industry does not significantly increase the employment and income since it is the primitive investment industry. The Ridge estimation models of the income show that the intelligence information service industry and global tourism industry are also predicted to influence on the income in order. According to the Lasso estimation models of income, four strategic industries such as the life care, smart maritime, the intelligence machine, and clean tech industry do not influence the income. Furthermore, the future transportation machine industry may influence the income negatively since it is the primitive investment industry. Thus, we have to select the appropriate economic objectives and priorities of industrial policies.

A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning (머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.105-126
    • /
    • 2023
  • The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.