• 제목/요약/키워드: 라벨링

검색결과 338건 처리시간 0.029초

GAN을 활용한 분류 시스템에 관한 연구 (A Study on Classification System using Generative Adversarial Networks)

  • 배상중;임병연;정지학;나철훈;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.338-340
    • /
    • 2019
  • 최근 네트워크의 발달로 인해 데이터가 축적되는 속도와 크기가 증가되고 있다. 이 데이터들을 분류하는데 많은 어려움이 있는데 그 어려움 중에 하나가 라벨링의 어려움이다. 라벨링은 보통 사람이 진행하게 되는데 모든 사람이 같은 방식으로 데이터를 이해를 하는데 무리가 있어 동일한 기준으로 라벨링하는 것은 매우 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 GAN을 이용하여 입력 이미지를 기반으로 새로운 이미지를 생성하고 이를 학습을 하는 데 사용을 하여 입력 데이터를 간접적으로 학습할 수 있게 구현하였다. 이를 통해 학습 데이터의 개수를 늘려 분류의 정확도를 높일 수 있을 것으로 사료된다.

  • PDF

전이학습과 k-means clustering의 융합을 통한 콘크리트 결함 탐지 성능 향상에 대한 연구 (A study on the improvement of concrete defect detection performance through the convergence of transfer learning and k-means clustering)

  • 윤영근;오태근
    • 문화기술의 융합
    • /
    • 제9권2호
    • /
    • pp.561-568
    • /
    • 2023
  • 콘크리트 구조물은 대내외적 환경에 의해 다양한 결함이 발생한다. 결함이 있는 경우 콘크리트의 구조적 안전성에 문제가 있어 이를 효율적으로 파악하여 유지관리하는 것이 중요하다. 하지만, 최근 딥러닝 연구는 콘크리트의 균열에 초점이 맞추어져 있어, 박락과 오염 등에 대한 연구는 부족하다. 본 연구에서는 라벨링이 어려운 박락과 오염에 초점을 맞추어 언라벨 방법, 필터링 방법, 전이학습과 k-means cluster의 융합을 통한 4개의 모델을 개발하고 성능을 평가하였다. 분석결과, 융합모델이 결함을 가장 세밀하게 구분하였으며, 직접 라벨링을 하는 것보다 효율성을 증가시킬 수 있었다. 본 연구 결과가 향후 라벨링이 어려운 다양한 결함 유형에 대한 딥러닝 모델 개발에 기여할 수 있기를 기대한다.

딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발 (Development of integrated data augmentation automation tools for deep learning)

  • 장찬호;이서영;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

인스타그램 게시물 데이터를 활용한 건강기능식품 브랜드 분석 및 평가 (Analysis and evaluation of Health Functional Food(HFF) brand using Instagram post data)

  • 윤현주;신재영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.533-534
    • /
    • 2021
  • 최근 소셜 네트워크 서비스(SNS)를 통한 건강기능식품 과대광고 적발이 증가하면서 SNS를 통해 브랜드를 선택함에 있어 신뢰도가 소비자에게 중요한 요소가 된다. 본 논문에서는 인스타그램의 해시태그를 이용해 게시글을 크롤링 하여 수집된 게시물 데이터를 가공 및 분석한다. 불용어 사전을 구축해 불용어를 제거해준 뒤 브랜드 추출을 진행하고, 건강기능식품 브랜드 5개에 대한 게시글 데이터를 수집한다. 5개 브랜드의 신뢰도 측정을 위해 게시글, 해시태그, 계정명을 분석기준으로 삼아 라벨링 처리를 한다. 라벨링 된 열을 통해 절대적 수치로 점수를 부여하여 백분율로 점수를 표현한다. 신뢰도 점수와 더불어 브랜드의 고객 참여도 건수를 같이 명시해 준다.

  • PDF

유해 사이트 식별을 위한 칼라 영상에서 인체 검출 (Human Bodies Detection in Color Images for Discrimination of Destructive Site to Public Moral)

  • 이병선;정장호;이은주
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.352-354
    • /
    • 2001
  • 컴퓨터 기술과 정보통신 기술의 발달로 인터넷 사용이 손쉬워 짐에 따라 청소년들에게 무제한으로 유해 사이트가 공개되어 많은 사회적인 문제가 되고 있다. 본 논문에서는 인터넷 사용자에게 음란 정보를 담고 있는 웹사이트 접근을 차단하는 방법에 관한 것으로 칼라 영상에서 인체를 검출하는 새로운 방법을 제안하였다. 효율적인 인체 검출을 위해 인체의 특징의 하나인 피부색을 HSI(Hue, Saturation, Intensity)의 공간에서 조명의 강도 및 각도 차에 영향이 적은 H값과 피부색을 이루는 RGB(Red, Green, Blue)공간에서 R값의 비를 이용하여 추출하고, 미디언 필터를 사용하여 1차적으로 잡음 제거를 하고, 라벨링을 통하여 임계값보다 작은 라벨을 제거함으로써 2차적인 잡음을 제거한다. 다양한 자세의 전신을 템플릿으로 DB화하고, 유형을 2차적인 잡음을 제거한 영상의 크기와 동일하게 확대 한 다음, 템플릿 매칭으로 유사성을 비교하여 인체를 검출하는 방법을 제안하였다. 실험 결과, 피부색을 검출하는 제안 방법이 명암 차를 극복하였고, 다양한 피부색 검출에 양호한 방법임을 확인할 수 있었다. 또한 다양한 템플릿을 만들어, 1차 잡음제거와 라벨링으로 2차 잡음제거를 한 입력 영상과의 템플릿 매칭으로 다양한 자세의 인체를 검출할 수 있었다.

  • PDF