• 제목/요약/키워드: 띄어쓰기

검색결과 147건 처리시간 0.023초

음절수에 따른 한국어 복합 명사 분리 방안 (A Division Method of Korean Compound Noun by number of syllable)

  • 최재혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.262-267
    • /
    • 1996
  • 한국어 맞춤법 검사기는 문서내에서 발생되는 비표준어 오류, 띄어쓰기/붙여쓰기 오류, 조사/어미 오류, 외래어 오류, 철자 오류 등에 대해서 이에 적합한 대치어를 제시해 준다. 일반적으로 한국어의 맞춤법 오류 중 가장 빈번하게 발생되는 것이 띄어쓰기 오류이며, 이 중에서도 복합 명사에 대한 띄어쓰기 오류가 가장 많이 발생한다. 본 논문에서는 복합 명사에 대한 띄어쓰기 교정 방안으로 복합명사의 음절수에 따라 1개의 결과만을 출력하도록 하는 복합 명사 분리 방안을 제시하며, 또한 복합 명사 분리 시의 사전 참조 횟수를 줄이는 방법을 제안한다.

  • PDF

Structural SVM을 이용한 한국어 자동 띄어쓰기 (Automatic Korean Word Spacing using Structural SVM)

  • 이창기;김현기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.270-272
    • /
    • 2012
  • 본 논문에서는 띄어쓰기가 완전히 무시된 한국어 문장의 띄어쓰기 문제를 위해 structural SVM을 이용한 한국어 띄어쓰기 방법을 제안한다. Structural SVM은 기존의 이진 분류 SVM을 sequence labeling 등의 문제에 적용할 수 있도록 확장된 것으로, 이 분야에 띄어난 성능을 보이는 것으로 알려진 CRF와 비슷하거나 더 높은 성능을 보이고 있다. 본 논문에서는 약 2,600만 어절의 세종 코퍼스 원문을 학습 데이터로 사용하고, 약 29만 어절의 ETRI 품사 부착 코퍼스를 평가 데이터로 사용하였다. 평가 결과 음절단위의 정확도는 99.01%, 어절단위의 정확도는 95.47%를 보였다.

명사 brigram 모델을 이용한 한국어 복합명사 분해 (Korean Compound Noun Decomposition using Noun Bigram Model)

  • 강민규;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-14
    • /
    • 2010
  • 본 논문에서는 명사의 띄어쓰기 bigram과 단일명사 정보를 이용하여 복합명사를 분해하는 방법을 제시한다. 붙여쓰기와 띄어쓰기를 모두 허용하는 복합명사의 특징에 따라 띄어쓰기 bigram으로 후보를 선정할 경우, 분해시간과 후보의 수를 크게 줄일 수 있으며, 긴 음절의 복합명사도 bigram의 chain을 통해 빠르게 후보 조합이 가능하다. 분해 후보가 복수일 경우, 명사 간 bigram 확률을 계산하여 최적의 분해 후보를 선정한다.

  • PDF

한글 문장의 자동 띄어쓰기를 위한 두 가지 통계적 모델 (Two Statistical Models for Automatic Word Spacing of Korean Sentences)

  • 이도길;이상주;임희석;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.358-371
    • /
    • 2003
  • 자동 띄어쓰기는 문장 내에서 잘못 띄어쓴 어절들을 올바르게 복원하는 과정으로서, 독자에게 글의 가독성을 높이고 문장의 뜻을 정확히 전달하기 위해 매우 중요하다. 기존의 통계 기반 자동 띄어쓰기 접근 방법들은 이전 띄어쓰기 상태를 고려하지 않기 때문에 잘못된 확률 정보에 의한 띄어쓰기를 할 수밖에 없었다. 본 논문에서는 기존의 통계 기반 접근 방법 의 문제점을 해결할 수 있는 두 가지 통계적 띄어쓰기 모델을 제안한다. 제안하는 모델은 자동 띄어쓰기를 품사 부착과 같은 분류 문제(classification problem)로 간주할 수 있다는 착안에 기반하며, 은닉 마르코프 모델을 일반화함으로써 확장된 문맥을 고려할 수 있고 보다 정확한 확률을 추정할 수 있도록 고안되었다. 제안하는 모델과 지금까지 가장 좋은 성능을 보이는 기존의 방법을 비교하기 위해 여러 가지 실험 조건에 따른 다양한 실험을 수행하였고, 오류에 대한 자세한 분석을 제시하고 있다 제안하는 모델을 복합 명사를 고려하는 평가 방식에 적응한 실험 결과, 98.33%의 음절 단위 정확도와 93.06%외 어절단위 정확률을 얻었다.

마코프 체인 밀 음절 N-그램을 이용한 한국어 띄어쓰기 및 복합명사 분리 (Korean Word Segmentation and Compound-noun Decomposition Using Markov Chain and Syllable N-gram)

  • 권오욱
    • 한국음향학회지
    • /
    • 제21권3호
    • /
    • pp.274-284
    • /
    • 2002
  • 한국어 대어휘 연속음성인식을 위한 텍스트 전처리에서 띄어쓰기 오류는 잘못된 단어를 인식 어휘에 포함시켜 언어모델의 성능을 저하시킨다. 본 논문에서는 텍스트 코퍼스의 띄어쓰기 교정을 위하여 한국어 음절 N-그램을 이용한 자동 띄어쓰기 알고리듬을 제시한다. 제시된 알고리듬에서는 주어진 입력음절열은 좌에서 우로의 천이만을 갖는 마코프 체인으로 표시되고 어떤 상태에서 같은 상태로의 천이에서 공백음절이 발생하며 다른 상태로의 천이에서는 주어진 음절이 발생한다고 가정한다. 마코프 체인에서 음절 단위 N-그램 언어모델에 의한 문장 확률이 가장 높은 경로를 찾음으로써 띄어쓰기 결과를 얻는다. 모든 공백을 삭제한 254문장으로 이루어진 신문 칼럼 말뭉치에 대하여 띄어쓰기 알고리듬을 적용한 결과 91.58%의 어절단위 정확도 및 96.69%의 음절 정확도를 나타내었다. 띄어쓰기 알고리듬을 응용한 줄바꿈에서의 공백 오류 처리에서 이 알고리듬은 91.00%에서 96.27%로 어절 정확도를 향상시켰으며, 복합명사 분리에서는 96.22%의 분리 정확도를 보였다.

한국어 문장의띄어 쓰기 오류 교정과 최적 형태소 분석을위한 통합 확률 모델 (A Unified Probablistic Model for Correcting Spacing Errors and Improving Accuracy of Morphological Analysis of Korean Sentences)

  • 이동주;연종흠;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.237-240
    • /
    • 2011
  • 띄어쓰기 오류는 한국어로 작성된 글에서 나타나는 가장 흔한 오류 중 하나로 문장의 의미적 모호성과 중의성을 가져온다. 규칙 기반 혹은 통계적접근 방법으로 띄어쓰기 오류를 교정하는다양한 방법이 제시되었으나, 기존의 방법들은 띄어쓰기를 형태소 분석의 전단계로 여기거나 띄어쓰기를 교정하기 위해서 형태소 분석을이용하는 등 각각을 독립된 과정으로 다루어, 한 과정에서 발생하는 오류가 다른 과정으로 전파되도록 하는 문제를 안고 있다. 본 논문에서는 띄어 쓰기와 최적 형태소 분석을 하나의 통합된 문제로 다루어각과정에서 발생할 수 있는 오류가 다른 과정에 영향을 주지 않도록 하고 상호 오류를 보완하여 좀더 정확한 띄어쓰기 오류 교정 및 형태소 분석을 가능하게 하는 확률적 접근 방법을 제시한다.

한글 문장의 자동 띄어쓰기 (Automatic Word-Segmentation for Hangul Sentences)

  • 강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.137-142
    • /
    • 1998
  • 자동 띄어쓰기는 띄어쓰기가 무시된 한글 문서의 자동색인이나 문자인식에서 줄바꿈 문자에 대한 공백 삽입 문제 등을 해결하는데 필요하다. 이러한 문서에서 공백이 삽입될 위치를 찾아 주는 띄어쓰기 알고리즘으로 어절 블록에 대한 문장 분할 기법과 양방향 최장일치법을 이용한 어절 인식 방법을 제안한다. 문장 분할은 한글의 음절 특성을 이용하여 어절 경계가 비교적 명확한 어절 블록을 추출하는 것이며, 어절 블록에 나타난 각 어절들을 인식하는 방법으로는 형태소 분석기를 이용한다. 4,500여 어절로 구성된 두 가지 유형의 문장 집합에 대하여 제안한 방법의 띄어쓰기 정확도를 평가한 결과 '공백 재현율'이 97.3%, '어절 재현율'이 93.2%로 나타났다.

  • PDF

어절 띄어쓰기를 고려한 형태소 단위 품사 태깅 모델 (Morpheme-Unit POS Tagging Model Considering Eojeol-Spacing)

  • 김진동;이상주;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 1998
  • 한국어 품사 태깅 모델은 어절 단위 모델과 형태소 단위 모델로 나눌 수 있다. 이들 중 형태소 단위 모델은 자료 부족 문제가 별로 심각하지 않고 비교적 풍부한 태깅 결과를 내어 준다는 점에서 선호되나 어절 단위로 띄어쓰기를 하는 한국어의 특성을 제대로 반영하지 못한다는 단점이 있다. 이에 본 논문에서는 한국어의 어절 띄어쓰기 정보를 활용하는 형태소 단위 품사 태깅 모델을 제안한다. 어절 띄어쓰기 정보는 복잡도가 매우 작기 때문에 모델 구축에 드는 추가 비용이 그리 크지 않다. 그림에도 불구하고 실험 결과는 어절 띄어쓰기 정보가 한국어 품사 태깅에 유용한 정보임을 보여준다.

  • PDF

띄어쓰기 오류에 강건한 문장 압축 기반 한국어 문장 분류 (Jam-packing Korean sentence classification method robust for spacing errors)

  • 박근영;김경덕;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.600-604
    • /
    • 2018
  • 한국어 문장 분류는 주어진 문장의 내용에 따라 사전에 정의된 유한한 범주로 할당하는 과업이다. 그런데 분류 대상 문장이 띄어쓰기 오류를 포함하고 있을 경우 이는 분류 모델의 성능을 악화시킬 수 있다. 이에 한국어 텍스트 혹은 음성 발화 기반의 문장을 대상으로 분류 작업을 수행할 경우 띄어쓰기 오류로 인해 발생할 수 있는 분류 모델의 성능 저하 문제를 해결해 보고자 문장 압축 기반 학습 방식을 사용하였다. 학습된 모델의 성능을 한국어 영화 리뷰 데이터셋을 대상으로 실험한 결과 본 논문이 제안하는 문장 압축 기반 학습 방식이 baseline 모델에 비해 띄어쓰기 오류에 강건한 분류 성능을 보이는 것을 확인하였다.

  • PDF

음성 인식 후처리를 위한 띄어쓰기 오류의 교정 (Word Spacing Error Correction for the Postprocessing of Speech Recognition)

  • 임동희;강승식;장두성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.25-27
    • /
    • 2006
  • 음성인식 결과는 띄어쓰기 오류가 포함되어 있으며 이는 인식 결과에 대한 이후의 정보처리를 어렵게 하는 요인이 된다. 본 논문은 음성 인식 결과의 띄어쓰기 오류를 수정하기 위하여 품사 정보를 이용한 어절 재결합 기법을 기본 알고리즘으로 사용하고 추가로 음절 바이그램 및 4-gram 정보를 이용하는 띄어쓰기 오류 교정 방법을 제안하였다. 또한, 음성인식기의 출력으로 품사 정보가 부착된 경우와 미부착된 경우에 대한 비교 실험을 하였다. 품사 미부착된 경우에는 사전을 이용하여 품사 정보를 복원하였으며 N-gram 통계 정보를 적용했을 때 기본적인 어절 재결합 알고리즘만을 사용 경우보다 띄어쓰기 정확도가 향상되는 것을 확인하였다.

  • PDF