한국어 맞춤법 검사기는 문서내에서 발생되는 비표준어 오류, 띄어쓰기/붙여쓰기 오류, 조사/어미 오류, 외래어 오류, 철자 오류 등에 대해서 이에 적합한 대치어를 제시해 준다. 일반적으로 한국어의 맞춤법 오류 중 가장 빈번하게 발생되는 것이 띄어쓰기 오류이며, 이 중에서도 복합 명사에 대한 띄어쓰기 오류가 가장 많이 발생한다. 본 논문에서는 복합 명사에 대한 띄어쓰기 교정 방안으로 복합명사의 음절수에 따라 1개의 결과만을 출력하도록 하는 복합 명사 분리 방안을 제시하며, 또한 복합 명사 분리 시의 사전 참조 횟수를 줄이는 방법을 제안한다.
본 논문에서는 띄어쓰기가 완전히 무시된 한국어 문장의 띄어쓰기 문제를 위해 structural SVM을 이용한 한국어 띄어쓰기 방법을 제안한다. Structural SVM은 기존의 이진 분류 SVM을 sequence labeling 등의 문제에 적용할 수 있도록 확장된 것으로, 이 분야에 띄어난 성능을 보이는 것으로 알려진 CRF와 비슷하거나 더 높은 성능을 보이고 있다. 본 논문에서는 약 2,600만 어절의 세종 코퍼스 원문을 학습 데이터로 사용하고, 약 29만 어절의 ETRI 품사 부착 코퍼스를 평가 데이터로 사용하였다. 평가 결과 음절단위의 정확도는 99.01%, 어절단위의 정확도는 95.47%를 보였다.
본 논문에서는 명사의 띄어쓰기 bigram과 단일명사 정보를 이용하여 복합명사를 분해하는 방법을 제시한다. 붙여쓰기와 띄어쓰기를 모두 허용하는 복합명사의 특징에 따라 띄어쓰기 bigram으로 후보를 선정할 경우, 분해시간과 후보의 수를 크게 줄일 수 있으며, 긴 음절의 복합명사도 bigram의 chain을 통해 빠르게 후보 조합이 가능하다. 분해 후보가 복수일 경우, 명사 간 bigram 확률을 계산하여 최적의 분해 후보를 선정한다.
자동 띄어쓰기는 문장 내에서 잘못 띄어쓴 어절들을 올바르게 복원하는 과정으로서, 독자에게 글의 가독성을 높이고 문장의 뜻을 정확히 전달하기 위해 매우 중요하다. 기존의 통계 기반 자동 띄어쓰기 접근 방법들은 이전 띄어쓰기 상태를 고려하지 않기 때문에 잘못된 확률 정보에 의한 띄어쓰기를 할 수밖에 없었다. 본 논문에서는 기존의 통계 기반 접근 방법 의 문제점을 해결할 수 있는 두 가지 통계적 띄어쓰기 모델을 제안한다. 제안하는 모델은 자동 띄어쓰기를 품사 부착과 같은 분류 문제(classification problem)로 간주할 수 있다는 착안에 기반하며, 은닉 마르코프 모델을 일반화함으로써 확장된 문맥을 고려할 수 있고 보다 정확한 확률을 추정할 수 있도록 고안되었다. 제안하는 모델과 지금까지 가장 좋은 성능을 보이는 기존의 방법을 비교하기 위해 여러 가지 실험 조건에 따른 다양한 실험을 수행하였고, 오류에 대한 자세한 분석을 제시하고 있다 제안하는 모델을 복합 명사를 고려하는 평가 방식에 적응한 실험 결과, 98.33%의 음절 단위 정확도와 93.06%외 어절단위 정확률을 얻었다.
한국어 대어휘 연속음성인식을 위한 텍스트 전처리에서 띄어쓰기 오류는 잘못된 단어를 인식 어휘에 포함시켜 언어모델의 성능을 저하시킨다. 본 논문에서는 텍스트 코퍼스의 띄어쓰기 교정을 위하여 한국어 음절 N-그램을 이용한 자동 띄어쓰기 알고리듬을 제시한다. 제시된 알고리듬에서는 주어진 입력음절열은 좌에서 우로의 천이만을 갖는 마코프 체인으로 표시되고 어떤 상태에서 같은 상태로의 천이에서 공백음절이 발생하며 다른 상태로의 천이에서는 주어진 음절이 발생한다고 가정한다. 마코프 체인에서 음절 단위 N-그램 언어모델에 의한 문장 확률이 가장 높은 경로를 찾음으로써 띄어쓰기 결과를 얻는다. 모든 공백을 삭제한 254문장으로 이루어진 신문 칼럼 말뭉치에 대하여 띄어쓰기 알고리듬을 적용한 결과 91.58%의 어절단위 정확도 및 96.69%의 음절 정확도를 나타내었다. 띄어쓰기 알고리듬을 응용한 줄바꿈에서의 공백 오류 처리에서 이 알고리듬은 91.00%에서 96.27%로 어절 정확도를 향상시켰으며, 복합명사 분리에서는 96.22%의 분리 정확도를 보였다.
띄어쓰기 오류는 한국어로 작성된 글에서 나타나는 가장 흔한 오류 중 하나로 문장의 의미적 모호성과 중의성을 가져온다. 규칙 기반 혹은 통계적접근 방법으로 띄어쓰기 오류를 교정하는다양한 방법이 제시되었으나, 기존의 방법들은 띄어쓰기를 형태소 분석의 전단계로 여기거나 띄어쓰기를 교정하기 위해서 형태소 분석을이용하는 등 각각을 독립된 과정으로 다루어, 한 과정에서 발생하는 오류가 다른 과정으로 전파되도록 하는 문제를 안고 있다. 본 논문에서는 띄어 쓰기와 최적 형태소 분석을 하나의 통합된 문제로 다루어각과정에서 발생할 수 있는 오류가 다른 과정에 영향을 주지 않도록 하고 상호 오류를 보완하여 좀더 정확한 띄어쓰기 오류 교정 및 형태소 분석을 가능하게 하는 확률적 접근 방법을 제시한다.
자동 띄어쓰기는 띄어쓰기가 무시된 한글 문서의 자동색인이나 문자인식에서 줄바꿈 문자에 대한 공백 삽입 문제 등을 해결하는데 필요하다. 이러한 문서에서 공백이 삽입될 위치를 찾아 주는 띄어쓰기 알고리즘으로 어절 블록에 대한 문장 분할 기법과 양방향 최장일치법을 이용한 어절 인식 방법을 제안한다. 문장 분할은 한글의 음절 특성을 이용하여 어절 경계가 비교적 명확한 어절 블록을 추출하는 것이며, 어절 블록에 나타난 각 어절들을 인식하는 방법으로는 형태소 분석기를 이용한다. 4,500여 어절로 구성된 두 가지 유형의 문장 집합에 대하여 제안한 방법의 띄어쓰기 정확도를 평가한 결과 '공백 재현율'이 97.3%, '어절 재현율'이 93.2%로 나타났다.
한국어 품사 태깅 모델은 어절 단위 모델과 형태소 단위 모델로 나눌 수 있다. 이들 중 형태소 단위 모델은 자료 부족 문제가 별로 심각하지 않고 비교적 풍부한 태깅 결과를 내어 준다는 점에서 선호되나 어절 단위로 띄어쓰기를 하는 한국어의 특성을 제대로 반영하지 못한다는 단점이 있다. 이에 본 논문에서는 한국어의 어절 띄어쓰기 정보를 활용하는 형태소 단위 품사 태깅 모델을 제안한다. 어절 띄어쓰기 정보는 복잡도가 매우 작기 때문에 모델 구축에 드는 추가 비용이 그리 크지 않다. 그림에도 불구하고 실험 결과는 어절 띄어쓰기 정보가 한국어 품사 태깅에 유용한 정보임을 보여준다.
한국어 문장 분류는 주어진 문장의 내용에 따라 사전에 정의된 유한한 범주로 할당하는 과업이다. 그런데 분류 대상 문장이 띄어쓰기 오류를 포함하고 있을 경우 이는 분류 모델의 성능을 악화시킬 수 있다. 이에 한국어 텍스트 혹은 음성 발화 기반의 문장을 대상으로 분류 작업을 수행할 경우 띄어쓰기 오류로 인해 발생할 수 있는 분류 모델의 성능 저하 문제를 해결해 보고자 문장 압축 기반 학습 방식을 사용하였다. 학습된 모델의 성능을 한국어 영화 리뷰 데이터셋을 대상으로 실험한 결과 본 논문이 제안하는 문장 압축 기반 학습 방식이 baseline 모델에 비해 띄어쓰기 오류에 강건한 분류 성능을 보이는 것을 확인하였다.
음성인식 결과는 띄어쓰기 오류가 포함되어 있으며 이는 인식 결과에 대한 이후의 정보처리를 어렵게 하는 요인이 된다. 본 논문은 음성 인식 결과의 띄어쓰기 오류를 수정하기 위하여 품사 정보를 이용한 어절 재결합 기법을 기본 알고리즘으로 사용하고 추가로 음절 바이그램 및 4-gram 정보를 이용하는 띄어쓰기 오류 교정 방법을 제안하였다. 또한, 음성인식기의 출력으로 품사 정보가 부착된 경우와 미부착된 경우에 대한 비교 실험을 하였다. 품사 미부착된 경우에는 사전을 이용하여 품사 정보를 복원하였으며 N-gram 통계 정보를 적용했을 때 기본적인 어절 재결합 알고리즘만을 사용 경우보다 띄어쓰기 정확도가 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.