• Title/Summary/Keyword: 띄어쓰기

Search Result 147, Processing Time 0.022 seconds

Effects of Spacing Words on Reading Adnominal Eojeol (띄어쓰기가 관형어절 이해에 미치는 영향)

  • Kim, Jihye;Nam, Kichun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • 띄어쓰기는 한글 맞춤법에 명시되어 있는 규정에 따르면 되지만, 근본적으로 명확한 정의가 내려있지 않으며 복잡하고 애매모호한 기준들이 얽혀 사용자들이 혼란을 겪는 등 많은 오류를 일으키고 있다. 이에 맞춤법 오류에 대한 원인을 찾아 체계적인 교육이 이루어지거나, 맞춤법을 수정 및 보완할 필요성이 있다 하겠다. 본 연구는 사용자들의 편의성을 우선시하여 맞춤법에 있어 논리적 근거를 마련하고 한국어 정보처리의 양상을 살펴보는 것에 의의가 있다. 이에 비교적 띄어쓰기 기준이 명확한 관형어절에 초점을 두어 띄어쓰기가 읽기에 어떤 영향을 미치는지 알아보고자 실시하였다. '관형사 + 명사' 구조와 '~적 + 명사' 구조의 관형어절이 포함된 104개의 문장을 가지고 2개의 목록을 만들었다. 목록 간에는 띄어쓰기 여부가 반대이며 피험자는 목록 중 하나를 경험하였다. 하나의 문장을 끊어서 제시하여 피험자는 읽는 데로 space bar key를 누르는 자기 읽기 조절 과제를 시행하였고, 이어서 문장에 대한 질문을 통해 이해도 검사를 실시하였다. 관형어절을 읽는 평균 속도를 분석한 결과 미세한 차이가 있었으나, 유의미하지는 않았다. 이는 관형어절에 있어서 띄어쓰기의 영향이 크지 않음을 의미한다고 볼 수 있겠다.

  • PDF

Improving Word Spacing Correction Methods for Efficient Text Processing (효율적인 문서처리를 위한 띄어쓰기 교정 기법 개선)

  • 강미영;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.486-488
    • /
    • 2003
  • 한국어 문서에서 가장 많이 나타나는 띄어쓰기 오류는 의미적이고 통사적인 중의성이나 오류를 야기한다. 이 논문은 부산대 인공지능 연구실에서 개발한 부분 문장 분석을 기반으로 하는 한국어 걸자 및 운법 검사기(2.2)에 구현되어 있는 어절 내 한 번 띄어쓰기 오류 교정 기법 및 어절 간 띄어쓰기 오류 교점 기법을 확장하고 개선하며 어절 내 여러 번 띄어쓰기 기법을 개발함을 목표로 한다.

  • PDF

Automatic Word Spacing based on Conditional Random Fields (CRF를 이용한 한국어 자동 띄어쓰기)

  • Shim, Kwang-Seob
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.2
    • /
    • pp.217-233
    • /
    • 2011
  • In this paper, an automatic word spacing system is proposed, which assumes sentences with no spaces between the words and segments them into proper words. Segmentation is regarded as a labeling problem in that segmentation can be done by attaching appropriate labels to each syllables of the given sentences. The system is based on Conditional Random Fields, which were reported to show excellent performance in labeling problems. The system is trained with a corpus of 1.12 million syllables, and evaluated with 2,114 sentences, 93 thousand syllables. The best results obtained are 98.84% of syllable-based accuracy and 95.99% of word-based accuracy.

  • PDF

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Development of POS Tagging System Independent to Word Spacing (띄어쓰기 비종속 품사 태깅 시스템 개발)

  • Lee, Kyung-Il;Ahn, Tae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 입력된 한국어 문자열로부터 형태소를 분석하고, 품사를 태깅하는 방법에 있어 개선된 통계적 모델을 제안하고, 이에 기반한 띄어쓰기 비종속 형태소 분석 및 태깅 시스템의 개발과 성능 평가에 대한 결과를 소개하고 있다. 제안된 통계 기반품사 태깅 시스템은 입력된 문자열로부터 음절의 띄어쓰기 확률값을 계산하여 유사어절을 생성하고, 유사어절 단위로 사용자 띄어쓰기와 상관없이 형태소 후보 리스트를 생성하며, 인접한 후보 형태소들의 접속 확률 계산에 있어 어절 간 접속 확률과 어절 내 접속 확률을 모두 사용함으로, 최적의 형태소 리스트를 결정하는 모델을 사용하고 있다. 특히, 형태소들의 접속 확률 계산 시 어절 간 접속 확률과 어절 내 접속 확률의 결합 비율이 음절의 띄어쓰기 확률 값과 사용자의 띄어쓰기 여부에 따라 자동으로 조절되는 특징을 가지고 있으며, 이를 통해 극단적으로 띄어 쓰거나 붙여 쓴 문장에 대해서도 평균 90%수준의 품사 태깅 성능을 달성할 수 있었다.

  • PDF

Word Segmentation System Using Extended Syllable bigram (확장된 음절 bigram을 이용한 자동 띄어쓰기 시스템)

  • Lim, Dong-Hee;Chun, Young-Jin;Kim, Hyoung-Joon;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.189-193
    • /
    • 2005
  • 본 논문은 통계 기반 방법인 음절 bigram을 이용한 자동 띄어쓰기를 기본 방법으로 하고 경우의 수를 세분화한 확장된 음절 bigram을 이용한 공백 확률, 띄어쓰기 통계를 바탕으로 최종 띄어쓰기 임계치 차등 적용, 에러 사전 적용 3가지 방법을 추가로 사용하는 경우 기본적인 방법만을 쓴 경우보다 띄어쓰기 정확도가 향상된다는 것을 확인하였다. 그리고 해당 음절에 대한 bigram이 없는 경우 확장된 음절 unigram을 통해 근사적으로 계산해 데이터부족 문제를 개선하였다. 한국어 말뭉치와 중국어 말뭉치에 대한 실험을 통해 본 논문에서 제안하는 방법이 한국어 자동 띄어쓰기뿐만 아니라 중국어 단어 분리에 적용할 수 있다는 것도 확인하였다.

  • PDF

Automatic Word-Spacing of Syllable Bi-gram Information for Korean OCR Postprocessing (음절 Bi-gram정보를 이용한 한국어 OCR 후처리용 자동 띄어쓰기)

  • 전남열;박혁로
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.95-100
    • /
    • 2000
  • 문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한극어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bi-gram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분서고가 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.

  • PDF

Automatic Word-Spacing of Syllable Bi-gram Information for Korean OCR Postprocessing (음절 Bi-gram정보를 이용한 한국어 OCR 후처리용 자동 띄어쓰기)

  • Jeon, Nam-Youl;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.95-100
    • /
    • 2000
  • 문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한국어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bigram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분석과 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.

  • PDF

Multi-class Classification System Based on Multi-loss Linear Combination for Word Spacing and Sentence Boundary Detection (띄어쓰기 및 문장 경계 인식을 위한 다중 손실 선형 결합 기반의 다중 클래스 분류 시스템)

  • Kim, GiHwan;Seo, Jisu;Lee, Kyungyeol;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.185-188
    • /
    • 2018
  • 띄어쓰기와 문장 경계 인식은 그 성능에 따라 자연어 분석 단계에서 오류를 크게 전파하기 때문에 굉장히 중요한 문제로 인식되고 있지만 각각 서로 다른 자질을 사용하는 문제 때문에 각각 다른 모델을 사용해 순차적으로 해결하였다. 그러나 띄어쓰기와 문장 경계 인식은 완전히 다른 문제라고는 볼 수 없으며 두 모델의 순차적 수행은 앞선 모델의 오류가 다음 모델에 전파될 뿐만 아니라 시간 복잡도가 높아진다는 문제점이 있다. 본 논문에서는 띄어쓰기와 문장 경계 인식을 하나의 문제로 보고 한 번에 처리하는 다중 클래스 분류 시스템을 통해 시간 복잡도 문제를 해결하고 다중 손실 선형 결합을 사용하여 띄어쓰기와 문장 경계 인식이 서로 다른 자질을 사용하는 문제를 해결했다. 최종 모델은 띄어쓰기와 문장 경계 인식 기본 모델보다 각각 3.98%p, 0.34%p 증가한 성능을 보였다. 시간 복잡도 면에서도 단일 모델의 순차적 수행 시간보다 38.7% 감소한 수행 시간을 보였다.

  • PDF

Korean sentence spacing correction model using syllable and morpheme information (음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델)

  • Choi, Jeong-Myeong;Oh, Byoung-Doo;Heo, Tak-Sung;Jeong, Yeong-Seok;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF