• Title/Summary/Keyword: 뜨임

Search Result 21, Processing Time 0.027 seconds

A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr) (마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

Analysis of Likelihood of Failure for the Brittle Fracture through Quantitative Risk Based Inspection using API-581 (API-581에 의한 정량적 위험기반검사에서 취성파괴에 의한 사고발생 가능성 해석)

  • Kim Tae-Ok;Lee Hern-Chang;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.1-6
    • /
    • 2006
  • To use pressurized facilities safely and effectively, a likelihood of failure (LOF) for the brittle fracture was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that for the case of the low temperature/low toughness and the temper embrittlement, the technical module subfactor (TMSF) showed high value for the A impact curve, low temperature, and the no post weld heat treatment. But the risk didn't significantly change at the $855^{\circ}F$ embrittlement, and the LOF far the sigma phase embrittlement showed high value at low temperature of the high sigma.

  • PDF

Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석)

  • Kim, Seon-Jin;Kong, Yu-Sik;Lee, Sang-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.

The effect of compress residual stresses of shot peening for fatigue strength of SUP7 and SAE9254 steel (SUP7 및 SAE9254강의 피로강도에 미치는 압축잔류응력의 영향)

  • Park, K.D.;Jung, C.G.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.67-73
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening iud single-stage shot peening for two kinds of spring steel(SUP7, SAE9254). This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from decreasing the surface roughness unchanging the surface hardness increasing the compressive residual stress. Results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

The Effects of the Tempering Temperatures on the Mechanical Properties of the Carbon Tool Steel(SK5M) for Flat Spring (박판 스프링용 탄소공구강대(SK5M)의 기계적 성질에 미치는 뜨임 온도의 영향)

  • Won S.T.;Sim K.S.;Lim C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.95-96
    • /
    • 2006
  • This study examined the effects of the tempering temperatures($360-420^{\circ}C$) on the mechanical properties of the carbon tool steel (SK4M) for flat spring. Hardness test, tensile test and fatigue test were performed at room temperature($20^{\circ}C$). The tensile strength and yield strength of $390^{\circ}C\;and\;420^{\circ}C$ tempered SK5M were 0.93-0.97 times and 0.81-0.87 times those of $360^{\circ}C$ tempered SK5M, respectively. The fatigue limit of $360-420^{\circ}C$ tempered SK5M were 35-40% of tensile strength of $360-420^{\circ}C$ tempered SK5M, respectively.

  • PDF

The effect of compress residual stresses for fatigue strength of Spring Steel (스프링강의 피로강도에 미치는 압축잔유응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.338-343
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc., In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel(SAE 9254, DIN 50CrV4) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) on low stress condition, the single stage shot peening is not affected by nonmetallic inclusion under metal. (2) it is possible that the two-stage shot peening increases the fatigue life and the high stress, but, that is affected by nonmetallic inclusion under metal. (3) so far, beeasily 50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Reliability Evaluation of Hardness and Impact Absorption Energy of Tempered Structure Steel SCM435 (뜨임한 구조용강 SCM435의 경도 및 충격 흡수에너지에 대한 신뢰성 평가)

  • Yun, Seo-Hyun;Gu, Se-Hun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.681-688
    • /
    • 2019
  • SM45C steel, which is widely used for mechanical structure, was carburized at 870℃ for 4 hours and tempered at 300℃ and 400℃ for 1, 3 and 6 hours. The tempered materials were evaluated for tensile test, hardness test and impact test. In particular, the hardness and the absorption energy were evaluate the reliability by the Weibull statistical analysis. 300℃-1h specimen is considered to be the best heat treatment condition in the tensile stress and the observation of fracture surface. 300℃-1h specimen showed larger shape and scale parameter than the other specimens, and Rockwell hardness variance was small and showed the best characteristics. 400℃-3h specimen showed larger shape and scale parameter than the other specimens, the dispersion of impact absorption energy is small, and showed excellent characteristics.

Prediction of Reliability of Fatigue Limit of S34MnV Steel for Marine Diesel Engine Crank Throw Components (선박용 디젤 엔진 크랭크 스로 부품용 S34MnV강의 피로한도에 대한 신뢰도 예측)

  • Kim, Seon Jin;Kong, Yu Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2016
  • The aim of this study is to estimate the reliability of fatigue limit of the material used for crank throw components according to the staircase method. The material used for crank throw components is forged S34MnV grade steel, which is heat treated by normalizing and tempering. In this work, to predict the reliability of the design fatigue strength, axially loaded constant amplitude fatigue testing was conducted. The test specimens were loaded with an axial push/pull load with a mean stress of 0 MPa, which corresponds to a stress ratio of R=-1. The fatigue test results were evaluated by Dixon-Mood formulas. The values of mean fatigue strength and standard deviation predicted by the staircase method were 296.3 MPa and 10.6 MPa, respectively. Finally, the reliability of the fatigue limit in some selected probability of failure is predicted. The proposed method can be applied for the determination of fatigue strength for design optimization of the forged steel.

Effect of Heat Treatment on High Temperature Fatigue Strength Characteristics of STB2 Bearing Steel (STB2강의 고온피로강도 특성에 미치는 열처리의 영향)

  • Oh, Sae-Kyoo;Kim, Yeon-Ho;Lee, Sang-Guk;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.138-144
    • /
    • 1989
  • It has been very important in various industry fields to improve the fatigue strength characteristics of bearings such as bearing life, fatigue limit, etc., because such poor properties could result in shortening the machinery life as well as in decreasing the accuracy. However, no successful heat treatment criterion seems to be available at present. In this study, the effect of the $170^{\circ}C\times120min$ tempering cycles repeated after $380^{\circ}C\times80min$ oil quenching for $800^{\circ}C$ spheroidizing-annealed bearing steel (STB2) as base metal on the $120^{\circ}C$ high temperature rotary bending fatigue strength characteristics were investigated, including the effects on hardness, Charpy impact value and micro-structure, in order to seek for the best heat treatment condition finally. The important results obtained are as follows : 1) The optimal cycle of tempering so that the fatigue strength .sigma. could become the highest was the 4th cycle. And it is confirmed that this $\sigma_{F}$ is about 6 times more increased than that of base metal, and about 1.3 times more increased than the case of the 1 cycle tempered. 2) As a result of the investigation for the effects of tempering cycles on hardness, the hardness at the tempering number of 2 thru 5 cyles was not decreased severely ; only about 10% decrease from those of the quenched and 1 cycle tempered case. Such hardness is equivalent to $H_{R}$/C61-62 with no bad effect on anti-abrasion of bearing steel. 3) In the case of 2 thru 5 cycle tempering as well as 1 cycle tempering, the impact value was not so improved comparing with the case of quenching, but an increase of 5 to 10% could be expected at least. 4) It was experimentally confirmed that the control of the mechanical properties improvement such as fatigue strength and fatigue life for bearing steels could be possible by the number of tempering cycles.

  • PDF

Effect of Heat Treatment on High Temperature Fatigue Strength Characteristics of STB2 Bearing Steel (STB2강의 고온피로강도 특성에 미치는 열처리의 영향)

  • Oh, Sae-Kyoo;Kim, Yeon-Ho;Lee, Sang-Guk;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.638-638
    • /
    • 1989
  • It has been very important in various industry fields to improve the fatigue strength characteristics of bearings such as bearing life, fatigue limit, etc., because such poor properties could result in shortening the machinery life as well as in decreasing the accuracy. However, no successful heat treatment criterion seems to be available at present. In this study, the effect of the $170^{\circ}C\times120min$ tempering cycles repeated after $380^{\circ}C\times80min$ oil quenching for $800^{\circ}C$ spheroidizing-annealed bearing steel (STB2) as base metal on the $120^{\circ}C$ high temperature rotary bending fatigue strength characteristics were investigated, including the effects on hardness, Charpy impact value and micro-structure, in order to seek for the best heat treatment condition finally. The important results obtained are as follows : 1) The optimal cycle of tempering so that the fatigue strength .sigma. could become the highest was the 4th cycle. And it is confirmed that this $\sigma_{F}$ is about 6 times more increased than that of base metal, and about 1.3 times more increased than the case of the 1 cycle tempered. 2) As a result of the investigation for the effects of tempering cycles on hardness, the hardness at the tempering number of 2 thru 5 cyles was not decreased severely ; only about 10% decrease from those of the quenched and 1 cycle tempered case. Such hardness is equivalent to $H_{R}$/C61-62 with no bad effect on anti-abrasion of bearing steel. 3) In the case of 2 thru 5 cycle tempering as well as 1 cycle tempering, the impact value was not so improved comparing with the case of quenching, but an increase of 5 to 10% could be expected at least. 4) It was experimentally confirmed that the control of the mechanical properties improvement such as fatigue strength and fatigue life for bearing steels could be possible by the number of tempering cycles.