• Title/Summary/Keyword: 딥러닝 추천

Search Result 118, Processing Time 0.024 seconds

Deep Learning Based on Foot Parameters Estimation for Shoe Recommendation Service (신발 추천 서비스를 위한 딥러닝 기반 발 변인 추정)

  • Kim, Un Yong;Yun, Jeongrok;Kim, Hoemin;Chun, Sungkuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.549-550
    • /
    • 2021
  • 사용자에게 맞춘 개인화된 제품과 서비스를 제공하는 기술의 발전으로 개인화의 수요는 점점 늘어날 것으로 전망하고 있다. 또한 개인 맞춤형으로 전문 스포츠 선수화, 족부 장애우를 위한 정형 제화 등 전문적인 기능 중심의 개인화나 패션을 위한 스타일 중심의 개인화 등 개인 맞춤 제작 신발을 제작할 때 기존의 아날로그적인 방식으로 발 변인을 측정했을 때 각 변인에 대해 기준점이 명확하지 않아서 재현성이 떨어진다. 따라서 본 논문에서는 자를 이용해 간단히 측정 가능한 기본적인 발 변인 이용하여 다른 변인들을 학습하고 딥러닝을 이용해 추정하는 방법에 대해 서술한다. 이를 위해 20개의 발 변인을 휙득 하였고 그 중 6개의 기본적인 발 변인을 이용해 14개 변인을적합 방지를 위해 Dorpout을 적용해 학습하고 학습한 데이터를 이용해 학습하지 않은 데이터를 테스트해 각 변인별 결과를 보여준다.

  • PDF

Generating Pairwise Comparison Set for Crowed Sourcing based Deep Learning (크라우드 소싱 기반 딥러닝 선호 학습을 위한 쌍체 비교 셋 생성)

  • Yoo, Kihyun;Lee, Donggi;Lee, Chang Woo;Nam, Kwang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2022
  • With the development of deep learning technology, various research and development are underway to estimate preference rankings through learning, and it is used in various fields such as web search, gene classification, recommendation system, and image search. Approximation algorithms are used to estimate deep learning-based preference ranking, which builds more than k comparison sets on all comparison targets to ensure proper accuracy, and how to build comparison sets affects learning. In this paper, we propose a k-disjoint comparison set generation algorithm and a k-chain comparison set generation algorithm, a novel algorithm for generating paired comparison sets for crowd-sourcing-based deep learning affinity measurements. In particular, the experiment confirmed that the k-chaining algorithm, like the conventional circular generation algorithm, also has a random nature that can support stable preference evaluation while ensuring connectivity between data.

A Deep Learning-based Regression Model for Predicting Government Officer Education Satisfaction (공무원 직무 전문교육 만족도 예측을 위한 딥러닝 기반 회귀 모델 설계)

  • Sumin Oh;Sungyeon Yoon;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.667-671
    • /
    • 2024
  • Professional job training for government officers emphasizes establishing desirable values as public officials and improving professionalism in public service. To provide customized education, some studies are analyzed factors affecting education satisfaction. However, there is a lack of research predicting education satisfaction with educational contents. Therefore, we propose a deep learning-based regression model that predicts government officer education satisfaction with educational contents. We use education information data for government officer. We use one-hot encoding to categorize variables collected in text format, such as education targets, education classifications, and education types. We quantify the education contents stored in text format as TF-IDF. We train our deep learning-based regression model and validate model performance with 10-Fold Cross Validation. Our proposed model showed 99.87% accuracy on test sets. We expect that customized education recommendations based on our model will help provide and improve optimized education content.

Developing a Deep Learning-based Restaurant Recommender System Using Restaurant Categories and Online Consumer Review (레스토랑 카테고리와 온라인 소비자 리뷰를 이용한 딥러닝 기반 레스토랑 추천 시스템 개발)

  • Haeun Koo;Qinglong Li;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.27-46
    • /
    • 2023
  • Research on restaurant recommender systems has been proposed due to the development of the food service industry and the increasing demand for restaurants. Existing restaurant recommendation studies extracted consumer preference information through quantitative information or online review sensitivity analysis, but there is a limitation that it cannot reflect consumer semantic preference information. In addition, there is a lack of recommendation research that reflects the detailed attributes of restaurants. To solve this problem, this study proposed a model that can learn the interaction between consumer preferences and restaurant attributes by applying deep learning techniques. First, the convolutional neural network was applied to online reviews to extract semantic preference information from consumers, and embedded techniques were applied to restaurant information to extract detailed attributes of restaurants. Finally, the interaction between consumer preference and restaurant attributes was learned through the element-wise products to predict the consumer preference rating. Experiments using an online review of Yelp.com to evaluate the performance of the proposed model in this study confirmed that the proposed model in this study showed excellent recommendation performance. By proposing a customized restaurant recommendation system using big data from the restaurant industry, this study expects to provide various academic and practical implications.

Precision Switching for Efficient Matrix Factorization in Recommender Systems (추천 시스템에서의 효율적인 행렬 분해 모델을 위한 정밀도 변환 기법)

  • Yu, Jae-Seo;Ko, Yun-Yong;Bae, Hong-Kyun;Kang, Seokwon;Yu, Yongseung;Park, Yongjun;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.314-315
    • /
    • 2021
  • 최근 딥러닝 분야에서 모델 학습을 가속화하기 위해, 실수 표현 시 사용하는 비트 수를 줄이는 양자화 연구가 활발히 진행되고 있다. 본 논문은 추천 시스템 모델 중 하나인 행렬 분해 모델(Matrix Factorization, MF)에 대한 양자화 수행 시, 발생할 수 있는 학습 정확도 손실을 방지하기 위한 정밀도 변환 방안을 제시한다. 우리는 실세계 데이터셋을 이용한 실험을 통해, 제안 방안이 적용된 MF 모델은 양자화 기법이 적용되지 않은 모델과 비슷한 추천 정확도를 보이며, 약 30% 개선된 속도로 학습됨을 확인할 수 있었다.

A customized coordinator based on deep learning (딥러닝 기반의 맞춤형 코디네이터)

  • Hong, Inhee;Lee, Sumin;Jo, Hyunji;Jeong, Mingyu
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1331-1333
    • /
    • 2021
  • 매일 아침 옷 매칭에 어려움을 겪는 사람들에게 지원하기 위한 서비스이다. 본 시스템은 자신이 가지고 있는 옷을 등록하고 등록된 옷을 토대로 상 하의를 추천한다. 옷장 바로 옆에 위치하고 있어 추천과 동시에 옷을 입어볼 수 있다는 장점이 있으며, 앱을 통해서도 추천이 가능하다. 이를 토대로 많은 사람들에게 시간 단축 및 다양한 패션 시도를 유도하는 효과를 기대할 수 있다.

Personalized Cross-Domain Recommendation of Books Based on Video Consumption Data (영상 소비 데이터를 기반으로 한 교차 도메인에서 개인 맞춤형 도서 추천)

  • Yea Bin Lim;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.382-387
    • /
    • 2024
  • Recently, the amount of adult reading has been continuously decreasing, but the consumption of video content is increasing. Accordingly, there is no information on preferences and behavior patterns for new users, and user evaluation or purchase of new books are insufficient, causing cold start problems and data scarcity problems. In this paper, a hybrid book recommendation system based on video content was proposed. The proposed recommendation system can not only solve the cold start problem and data scarcity problem by utilizing the contents of the video, but also has improved performance compared to the traditional book recommendation system, and even high-quality recommendation results that reflect genre, plot, and rating information-based user taste information were confirmed.

A Topic Related Word Extraction Method Using Deep Learning Based News Analysis (딥러닝 기반의 뉴스 분석을 활용한 주제별 최신 연관단어 추출 기법)

  • Kim, Sung-Jin;Kim, Gun-Woo;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.873-876
    • /
    • 2017
  • 최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.

Apparel recommendation service based on image recognition over virtual fitting machine (영상처리 기술을 활용한 가상 피팅기와 머신 러닝 기술을 기반으로 한 옷 추천 서비스)

  • Kim, Nam-Hoon;Kim, Dong-Gyun;Jung, Jae-Jin;Cha, Jae-Sung;Kim, Woongsup
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.786-789
    • /
    • 2018
  • 우리는 가상 현실 환경에서 사람이 직접 옷을 입지 않은 상황에서 미리 피팅 상황을 확인할 수 있는 시스템을 구현하였다. 이를 위하여 우리는 시스템을 이용한 카메라 촬영과 결과를 출력하는 기능, 그리고 영상처리에서 사람 얼굴 인지, 및 그에 대한 내용을 기반으로 옷을 오버레이하는 기능을 구현하였다. 추가 기능으로는 사람 손동작 인지를 통한 커맨드 제어, 딥러닝을 이용하여 사람의 얼굴에 어울리는 옷을 추천해주는 추천 서비스를 구현하였다.

Topic-based Knowledge Graph-BERT (토픽 기반의 지식그래프를 이용한 BERT 모델)

  • Min, Chan-Wook;Ahn, Jin-Hyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.557-559
    • /
    • 2022
  • 최근 딥러닝의 기술발전으로 자연어 처리 분야에서 Q&A, 문장추천, 개체명 인식 등 다양한 연구가 진행 되고 있다. 딥러닝 기반 자연어 처리에서 좋은 성능을 보이는 트랜스포머 기반 BERT 모델의 성능향상에 대한 다양한 연구도 함께 진행되고 있다. 본 논문에서는 토픽모델인 잠재 디리클레 할당을 이용한 토픽별 지식그래프 분류와 입력문장의 토픽을 추론하는 방법으로 K-BERT 모델을 학습한다. 분류된 토픽 지식그래프와 추론된 토픽을 이용해 K-BERT 모델에서 대용량 지식그래프 사용의 효율적 방법을 제안한다.