딥러닝을 이용한 학습자 맞춤 강의 추천 프로젝트를 연구한다. 추천시스템은 웹과 앱에서 쉽게 발견할 수 있으며 이 특성을 이용한 예제는 사용자 클릭으로 특성 영상 추천과 SNS에서 평소 사용자가 관심 있던 분야의 아이템을 광고하는 것이 있다. 본 연구에서는 문장 유사도인 Word2Vec를 주로 이용하여 2번의 필터링을 거쳤으며 Surprise 라이브러리를 통해 강좌 추천을 하였다. 이러한 시스템으로 사용자에게 간편하고 편리하게 원하는 분류의 강좌 데이터를 제공한다. Surprise 라이브러리는 Python scikit-learn 기반의 라이브러리이며 추천시스템에 편리하게 사용된다. 데이터를 분석하여 시스템을 빠른 속도로 구현하고 딥러닝을 사용하여 강좌 단계를 거쳐 보다 더 정밀한 결과를 구현해낸다. 사용자가 관심 있는 키워드를 입력하면 해당 키워드와 강좌 제목과의 유사도를 실행하고 추출된 영상 데이터로 또 음성 텍스트와의 유사도를 실행하여 추출된 데이터로 Surprise 라이브러리를 통해 가장 높은 순위의 영상 데이터를 추천한다.
개인화 추천시스템은 각 개인의 관심사나 선호도를 분석하여 이에 맞는 정보나 제품을 추천해주는 것을 의미한다. 이러한 개인화 추천을 통해 소비자들은 본인에게 필요한 제품들을 보다 빠르게 접함으로써 정보 탐색에 소모하는 시간을 단축할 수 있으며, 기업들은 소비자들의 필요에 맞는 적절한 제품을 추천해줌으로써 기업 이윤을 증가시킬 수 있다. 본 연구에서는 대표적인 개인화 추천 기법들인 협업 필터링, 행렬 요인화, 딥러닝을 사용하여 소비자에게 제품을 추천해준다. 이를 위해 원데이터 (Raw data)인 쇼핑몰 상품 구매 후기 데이터세트를 추천시스템의 입력으로 전달하기 위한 형태로 전처리하고, 전처리한 데이터세트를 다각도로 분석해본다. 또한, 각각의 모델들이 추천한 결과에 대해 검증 및 성능 비교를 수행하고 최적의 성능을 보이는 모델을 탐색하여 이후 해당 쇼핑몰에서 추천시스템 구축 시 어떤 모델을 사용하는 것이 좋을지를 제시한다.
최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.
LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.
최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.
기존의 추천시스템은 상품간 혹은 사용자 간의 유사도를 기반으로 작동한다. 하지만 이는 사용자가 유사한 상품 추천 속에 갇히게 되는 필터 버블의 문제와 추천시스템의 고질적인 문제인 데이터 희소성 문제를 피할 수 없게 된다. 따라서 본 연구에서는 사용자의 취향과 체형 정보를 반영하여 사용자의 평점을 예측하는 협업 필터링 기반 딥러닝 추천과 상품간 비유사성을 고려하여 사용자의 평점을 예측하는 내용 기반 추천을 혼합한 하이브리드 추천 모델을 구축하여 기존 추천시스템의 문제점을 해결하였다. 모델의 성능평가를 위해 인터넷 의류 쇼핑몰을 대상으로 유사한 이미지를 활용한 하이브리드 추천 모델과 NDCG 값을 비교하였고 유사도가 낮은 이미지를 활용한 모델이 더 우수한 성능을 보였다. 이는 다른 제품과는 달리 소비자가 의류를 구매할 경우 이미 구매한 상품과 유사한 상품보다는 유사하지 않은 상품을 구매할 가능성이 크다는 것을 보여준다.
최근 인공지능과 딥러닝 기술은 크게 발전하였으며, 그 중에서도 BERT 모델은 트랜스포머 아키텍처를 기반으로 한 자연어 처리 분야에서 문맥 이해 능력이 뛰어나다는 평가를 받고 있다. 이러한 성능은 전통적인 추천 시스템을 한 단계 더 발전시킬 수 있는 잠재력을 지니고 있다. 본 연구에서는 추천 시스템의 성능 향상을 위해 협업 필터링 방식에 딥러닝 모델을 결합하는 접근 방식을 채택하였다. 구체적으로, BERT를 활용해 사용자 리뷰의 감정 분석을 수행하고, 이러한 리뷰 감정을 기반으로 사용자를 임베딩함으로써 유사한 취향을 가진 사용자를 찾아내어 추천하는 시스템을 구현하였다. 또한 이 과정에서 오픈소스 검색 엔진인 Elasticsearch를 활용하여 빠른 검색, 추천 결과를 검색할 수 있다. 사용자의 텍스트 데이터를 분석하여 추천의 정확도와 개인화 수준을 높이는 접근 방식은 향후 다양한 온라인 서비스에서의 사용자 경험 개선에 중요한 역할을 할 것이다.
웹 사이트 사용자들은 자신의 취향에 맞춘 웹 사이트 개인화 서비스를 원한다. 이에 따라 관련 기업들은 웹 사이트의 회원가입을 통해 사용자들의 개인 정보를 관리하여 개인화 서비스를 지원하고 있다. 하지만 기업들의 개인 정보 유출 사고와 잘못된 기업 간 공유로 개인 정보보호 관리에 어려움이 있다는 문제점이 있다. 본 논문에서는 클라이언트 기반 딥러닝(Client-based Deep Learning)과 웹 브라우저 표준 데이터베이스 IndexedDB를 사용하여 검색 카테고리 추천 시스템을 구현한다.
인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.
스마트팜은 농업과 ICT의 융복합을 통해 농업의 생산뿐만 아니라 유통과 소비를 포함한 농업과 관련된 다양한 분야로 새로운 가치를 창출하는 것을 의미한다. 국내에서도 스마트 농업 확산을 위한 임대형 스마트팜을 조성하고, 스마트팜 빅데이터 플랫폼을 구축하여 데이터 수집·활용 촉진. 스마트 APC 확대, 온라인거래소 운영 및 도매시장 거래정보 디지털화 등 산지에서 소비지까지 농산물 유통 디지털 전환을 추진하고 있다. 이처럼 농업 데이터는 다양한 출처에서 특성에 따라 정보가 생성되고 있지만, 통계 및 정형화된 데이터를 이용한 서비스로만 활용되고 있다. 이는 농업에서 생산·유통·소비까지 분산된 데이터 수집으로 인해 한계가 있으며 다양한 출처로부터의 다양한 형태의 데이터를 수집·처리하기 어렵기 때문이다. 그러므로 본 논문에서는 디지털 농업을 위한 국내 농업 데이터 수집·공유 현황을 분석하고 인공지능 서비스를 위한 데이터 수집·연계 방법을 제안한다. 그리고 제안하는 데이터를 이용하여 딥러닝 기반의 환경 인자를 추천하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.