Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
Journal of the Korean Society of Radiology
/
v.17
no.1
/
pp.37-46
/
2023
This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.435-441
/
2024
In order for the large amount of collected data sets to be used as deep learning training data, sensitive personal information such as resident registration number and disease information must be changed or encrypted to prevent it from being exposed to hackers, and the data must be reconstructed to match the structure of the built deep learning model. Currently, these tasks are performed manually by experts, which takes a lot of time and money. To solve these problems, this paper proposes a technique that can automatically perform data processing tasks to protect personal information during the deep learning process. In the proposed technique, privacy protection tasks are performed based on data generalization and data reconstruction tasks are performed using circular queues. To verify the validity of the proposed technique, it was directly implemented using C language. As a result of the verification, it was confirmed that data generalization was performed normally and data reconstruction suitable for the deep learning model was performed properly.
With the development of technology, efforts to reduce the exposure dose received by patients in CT scans are continuing with the development of new reconstruction techniques. Recently, deep learning reconstruction techniques have been developed to overcome the limitations of repetitive reconstruction techniques. This study aims to evaluate the usefulness of images according to reconstruction techniques in pediatric chest CT images. Patient study conducted a study on 85 pediatric patients who underwent chest CT scan at P-Hospital in Gyeongsangnam-do from January 1, 2021 to December 31, 2022. The phantom used in the Phantom Study is the Pediatrics Whole Body Phantom PBU-70. After the test, the images were reconstructed with FBP, ASIR-V (50%) and DLIR (TF-Medium, High), and the images were evaluated by obtaining SNR and CNR values by setting ROI of the same size. As a result, TF-H of deep learning reconstruction techniques had the lowest noise value compared to ASIR-V (50%) and TF-M in all experiments, and SNR and CNR had the highest values. In pediatric chest CT scans, TF images with deep learning reconstruction techniques were less noisy than ASiR-V images with adaptive statistical iterative reconstruction techniques, CNR and SNR were higher, and the quality of images was improved compared to conventional reconstruction techniques.
Min, Ye Sul;Jung, Hyunoh;Lee, Hyerin;Lee, Sungyeon;;Jeong, Junho;Son, Yunsik
Annual Conference of KIPS
/
2017.11a
/
pp.306-309
/
2017
소프트웨어의 보안에 대한 중요성이 점차 높아짐에 따라, 소스코드 기반의 소프트웨어의 보안약점 분석 기법에서 더 나아가 소스 코드가 존재하지 않는 바이너리 파일을 대상으로 분석을 수행하는 연구가 진행되고 있다. 왜냐하면 소프트웨어 개발의 복잡성 증가에 따른 서드파티 라이브러리 활용과 레거시 코드의 관리 부재, 임베디드 소프트웨어의 특성 등으로 인해 소스 코드가 존재하지 않는 바이너리 코드의 사용이 늘어나고 있기 때문이다. 따라서 최근 바이너리 코드에 내제된 보안약점을 분석하기 위해서 중간코드를 이용하여 정적분석을 수행하는 다양한 연구가 진행되고 있다. 중간언어를 사용함으로 실행환경에 따라 달라지는 바이너리 코드가 중간언어로만 변환이 된다면 동일한 형태의 보안약점 분석기술을 통해 효과적인 수행이 가능하다. 본 논문에서는 이러한 바이너리 코드로부터 중간언어로 변환시 컴파일 과정에서 상실된 복합 자료형을 재구성하기 위해 Word2vec 딥러닝 기법을 이용한 추론기법을 제안한다.
Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas.In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.
소음이 심하거나 긴급한 상황 등에서 서로 다른 핸드제스처에 대한 인식을 컴퓨터의 입력으로 받고 이를 특정 명령으로 인식하는 등의 연구가 로봇 분야에서 연구되고 있다. 그러나 핸드제스처에 대한 전처리 과정에서 RGB데이터를 활용하거나 또는 스켈레톤을 활용하는 연구들이 다양하게 연구되었지만, 실생활에서의 노이즈가 많아 분류 정확도가 높지 않거나 컴퓨팅 파워의 사용이 과다한 문제가 발생했다. 본 논문에서는 RGBD 이미지를 사용하여 Hand Gesture를 트레이닝 받은 Keras 모델을 통해 입력받은 Hand Gesture을 분류하는 연구를 진행하였다. Depth Camera를 통하여 입력받은 Hand Gesture Raw-Data를 Image로 재구성하여 딥러닝을 진행하였다.
Kim, Hyeonwoo;Kim, Hyungjoon;Im, Dong-Hyuck;Hwang, Eenjun
Annual Conference of KIPS
/
2019.10a
/
pp.1045-1048
/
2019
최근 CCTV 사용이 보편화되면서 방범 목적으로 서비스 시설이나 공공시설에 설치되는 CCTV의 수가 급격하게 증가하고 있다. 그에 따라 CCTV를 감시하는 노동력이 부족해지는 문제가 발생하여 이를 대체하기 위해 카메라 영상을 통하여 한번 인식한 사람을 다른 시간이나 장소에서 촬영된 영상에서 다시 인식하는 사람 재인식 기술이 주목받고 있다. 또한, 이러한 사람 재인식 기술은 보안 분야뿐만 아니라 영화나 드라마와 같은 영상 컨텐츠에 적용되어 불법 복제물을 찾는 일에 사용될 수도 있다. 기존의 사람 재인식에는 이미지의 유사도를 계산하는 방법이 사용되었지만, 조명이나 카메라 각도가 달라지면 성능이 급격하게 떨어지는 문제가 있었다. 최근에는 딥러닝 기술이 발달하면서 전반적인 영상처리 분야의 성능이 향상되었고, 사람 재인식 분야 역시 딥러닝을 활용하면서 성능이 향상되었다. 하지만 딥러닝을 활용한 방법의 경우 보통 두 개의 이미지를 입력으로 사용하여 같은지 다른지를 판단하게 되므로 각 이미지의 공통점이나 차이점을 동시에 고려하기는 어려운 점이 있다. 본 논문에서는 이러한 점을 해결하기 위해 세 개의 사람 이미지를 입력으로 사용하여 특징을 추출하고, 특징 맵을 재구성하여 각 이미지의 차이점과 공통점을 동시에 고려하며 학습할 수 있는 모델을 제안한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.501-507
/
2020
This paper proposes a new frame synchronization technique based on convolutional neural network (CNN). The conventional frame synchronizers usually find the matching instance through correlation between the received signal and the preamble. The proposed method converts the 1-dimensional correlator ouput into a 2-dimensional matrix. The 2-dimensional matrix is input to a convolutional neural network, and the convolutional neural network finds the frame arrival time. Specifically, in additive white gaussian noise (AWGN) environments, the received signals are generated with random arrival times and they are used for training data of the CNN. Through computer simulation, the false detection probabilities in various signal-to-noise ratios are investigated and compared between the proposed CNN-based technique and the conventional one. According to the results, the proposed technique shows 2dB better performance than the conventional method.
This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.333-338
/
2019
인코더-디코더(Encoder-decoder)는 현대 기계 번역(Machine translation)의 가장 기본이 되는 모델이다. 인코딩은 마치 인간의 뇌가 출발어(Source language) 문장을 읽고 이해를 하는 과정과 유사하고, 디코딩은 뇌가 이해한 의미를 상응하는 도착어(Target language) 문장으로 재구성하는 행위와 비슷하다. 그렇다면 벡터로 된 인코더 표현은 문장을 읽고 이해함으로써 변화된 뇌의 상태에 해당한다고 볼 수 있다. 사람이 어떤 문장을 잘 번역하기 위해서는 그 문장에 대한 이해가 뒷받침되어야 하는 것처럼, 기계 역시 원 문장이 가진 의미를 제대로 인코딩해야 향상된 성능의 번역이 가능할 것이다. 본 논문에서는 뇌과학에서 뇌 동기화(Brain-to-brain coupling)라 일컫는 현상을 모방해, 출발어와 도착어의 공통된 의미를 인코딩하여 기계 번역 성능 향상에 도움을 줄 수 있는 이중 번역 기법을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.