• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.032 seconds

Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects (딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용)

  • Hanbi Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

Design of disease diagnosis system for pets (반려동물의 질병 진단 시스템)

  • Go, Jun-Hyeok;O, Dong-Hyeop;Lee, Ji-Won;Baek, Chan-Young;Kim, Woo-Sung
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.635-636
    • /
    • 2022
  • 본 논문은 딥러닝을 이용해 개인이나, 수의사가 반려동물의 피부병을 특정 하는데 있어서 도움을 줄 수 있는 시스템을 설계하였다. 이 시스템은 사용자가 사용하는 모바일 어플리케이션을 통해 이미지를 수집하고 Mask_RCNN 모델을 사용하여 '구진 플라크','비듬 각질 상피성잔고리', '태선화 과다색소침착', 미란 궤양', '결정 종괴', 농포 여드름'의 6 가지 상태로 분류한 다음 사용자에게 대처법과 병명을 알려주는 반려동물 질병 진단 시스템을 설계하였다.

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

A Research on Re-examining Discriminator Design Space for Performance Improvement of ESRGAN (ESRGAN의 성능 향상을 위한 판별자 설계 공간 재검토에 관한 연구)

  • Sung-Wook Park;Jun-Yeong Kim;Jun Park;Se-Hoon Jung;Chun-Bo Sim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.513-514
    • /
    • 2023
  • 초해상은 저해상도의 영상을 고해상도 영상으로 합성하는 기술이다. 이 기술에 딥러닝이 적용되어, 2014년에는 SRCNN(Super Resolution Convolutional Neural Network) 모델이 발표됐다. 이후에는 SRCAE(Super Resolution Convolutional Autoencoders)와 GAN(Generative Adversarial Networks)을 기반으로 한 SRGAN(Super Resolution Generative Adversarial Networks) 등, SRCNN의 성능을 능가하는 모델들이 발표됐다. ESRGAN(Enhanced Super Resolution Generative Adversarial Networks)은 SRGAN 모델의 성능을 개선했지만, 완벽한 성능을 내지 못하는 문제점이 있다. 이에 본 논문에서는 판별자(Discriminator) 구조를 변경하여 ESRGAN의 성능을 개선한다. 실험 결과, 제안하는 모델이 ESRGAN보다 더 높은 성능을 보일 것으로 기대된다.

Difficulty-adjustable Phrase-level Cloze Question Generation System (난이도 조절 가능한 어구 단위 빈칸 추론 문항 생성 시스템)

  • Seokhoon Kang;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.113-118
    • /
    • 2023
  • 딥러닝을 이용한 언어 모델은 다양한 분야에서 사용되고 있는데, 그 중 교육 분야에선 꾸준히 시험 문항을 자동으로 생성하려는 요구가 존재해 왔다. 그러나 빈칸 추론 문항, 그 중에서도 어구 단위 빈칸 추론 문항은 학습 및 평가 목적으로 널리 쓰이고 있지만, 이를 자동 생성하려는 연구는 상대적으로 드물다. 이에 본 연구에선 masked language modeling (MLM)을 이용한 난이도 조절이 가능한 어구 단위 빈칸 추론 문항 생성 시스템을 제안한다. 본 시스템은 정답 생성 모델의 attention 정보에 따라 지문 내 중요한 어구를 삭제해 오답을 생성하고, 동시에 어구의 삭제 비율을 조절함으로써 더 쉽거나 더 어려운 오답을 만들어낼 수 있다. 평가 결과, 제안한 시스템은 기존 접근법보다 정답과의 유사도가 최고 28.3% 낮았고, 또한 난이도 설정에 따라 쉬운 오답이 어려운 오답에 비해 유사도가 15.1% 낮아, 더 정답과 먼 뜻의 오답을 생성해내었다.

  • PDF

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

Detection of Active Fire Objects from Drone Images Using YOLOv7x Model (드론영상과 YOLOv7x 모델을 이용한 활성산불 객체탐지)

  • Park, Ganghyun;Kang, Jonggu;Choi, Soyeon;Youn, Youjeong;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1737-1741
    • /
    • 2022
  • Active fire monitoring using high-resolution drone images and deep learning technologies is now an initial stage and requires various approaches for research and development. This letter examined the detection of active fire objects using You Look Only Once Version 7 (YOLOv7), a state-of-the-art (SOTA) model that has rarely been used in fire detection with drone images. Our experiments showed a better performance than the previous works in terms of multiple quantitative measures. The proposed method can be applied to continuous monitoring of wide areas, with an integration of additional development of new technologies.

Vision-Based Driver Monitoring Technology Trend for Takeover in Autonomous Vehicles (자율주행자동차에서의 제어권전환을 위한 영상 기반 운전자 모니터링 기술 동향)

  • Lee, Dong-Hwan;Kim, Kyong-Ho;Kim, Do-Hyun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1090-1093
    • /
    • 2020
  • 운전자가 아닌 자율주행 시스템이 운전을 주도하기 위한 기술의 상용화를 위해 많은 기업이 노력 중이다. 특히 운전자의 안전을 보장하기 위한 운전자와 자율주행 시스템 간의 제어권전환이 중요하다. 운전자의 주행과 관련 없는 행동은 제어권전환 상황에서 운전자를 위험에 빠뜨릴 수 있으므로 제어권전환을 돕기 위한 운전자 모니터링 기술에 관한 많은 연구가 진행되고 있다. 운전자 모니터링 기술은 주로 생체 정보, 차량 정보, 영상을 사용하여 운전자의 상태와 부주의 행동 등을 감지하는 기술이다. 최근 머신 러닝, 딥 러닝을 사용한 영상처리 및 인식 기술 등의 발전으로 영상을 사용한 운전자 모니터링 기술이 활발하게 연구되고 있다. 따라서 본 논문에서는 영상기반 운전자 모니터링 기술 동향에 대해 상세히 기술하였다. 특히 운전자의 부주의 행동 중 졸음은 운전자가 주행 상황을 전혀 인지하지 못하게 할 수 있어 더욱 위험한 행동이다. 따라서 영상기반 운전자 모니터링 기술을 졸음 인식과 그 외의 행동 인식으로 분류하여 동향을 정리하였다.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.