• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.034 seconds

Design and Implementation of Hierarchical Image Classification System for Efficient Image Classification of Objects (효율적인 사물 이미지 분류를 위한 계층적 이미지 분류 체계의 설계 및 구현)

  • You, Taewoo;Kim, Yunuk;Jeong, Hamin;Yoo, Hyunsoo;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.

  • PDF

Image Segmentation for Fire Prediction using Deep Learning (딥러닝을 이용한 화재 발생 예측 이미지 분할)

  • TaeHoon, Kim;JongJin, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we used a deep learning model to detect and segment flame and smoke in real time from fires. To this end, well known U-NET was used to separate and divide the flame and smoke of the fire using multi-class. As a result of learning using the proposed technique, the values of loss error and accuracy are very good at 0.0486 and 0.97996, respectively. The IOU value used in object detection is also very good at 0.849. As a result of predicting fire images that were not used for learning using the learned model, the flame and smoke of fire are well detected and segmented, and smoke color were well distinguished. Proposed method can be used to build fire prediction and detection system.

Copy-Transformer model using Copy-Mechanism and Inference Penalty for Document Abstractive Summarization (복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 기반 문서 생성 요약)

  • Jeon, Donghyeon;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.301-306
    • /
    • 2019
  • 문서 생성 요약은 최근 딥러닝을 이용한 end-to-end 시스템을 통해 유망한 결과들을 보여주고 있어 연구가 활발히 진행되고 있는 자연어 처리 분야 중 하나이다. 하지만 문서 생성 요약 모델을 구성하기 위해서는 대량의 본문과 요약문 쌍의 데이터 셋이 필요한데, 이를 구축하기가 쉽지 않다. 따라서 본 논문에서는 정교한 뉴스 기사 요약 데이터 셋을 기계적으로 구축하는 방법을 제안한다. 또한 딥러닝 기반의 생성 요약은 입력 문서와 다른 정보를 생성하거나, 또는 같은 단어를 반복하여 생성하는 문제점들이 존재한다. 이를 해결하기 위해 요약문을 생성할 때 입력 문서의 내용을 인용하는 복사-메커니즘과, 추론 단계에서 단어 반복을 직접적으로 제어하는 페널티를 사용하면 상대적으로 안정적인 문장이 생성될 수 있다. 그리고 Transformer 모델은 순환 신경망 모델보다 요약문 생성 과정에서 시퀀스 길이가 긴 본문의 정보를 적절히 인코딩하여 줄 수 있는 모델이다. 따라서 본 논문에서는 복사-메커니즘과 추론 단계의 페널티를 이용한 Copy-Transformer 모델을 한국어 문서 생성 요약 데이터에 적용하였다. 네이버 지식iN 질문 요약 데이터 셋과 뉴스 기사 요약 데이터 셋 상에서 실험한 결과, 제안한 모델을 이용한 생성 요약이 비교 모델들 대비 가장 좋은 성능을 보이고 양질의 요약을 생성하는 것을 확인하였다.

  • PDF

Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF (Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템)

  • Lee, Dong-Yub;Lim, Heui-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

Korean Entity Recognition System using Bi-directional LSTM-CNN-CRF (Bi-directional LSTM-CNN-CRF를 이용한 한국어 개체명 인식 시스템)

  • Lee, Dong-Yub;Lim, Heui-Seok
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.327-329
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.

  • PDF

A Design for Movie Recommender System using Embedding and Deep-Learning Technique (임베딩 기법과 딥러닝 기법을 이용한 영화 추천 시스템 설계)

  • Yu, WonHee;Lim, Heuiseok
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.648-649
    • /
    • 2016
  • 일반적으로 협업 핑터랭 기반의 추천 시스템에서는 사용자와 아이템 간의 상호 작용이 희박하게 나타나는 문제 때문에 성능상의 한계점을 가지고 있다. 이 문제는 전통적으로 사용되었던 기계 학습의 입력 특성들이 의미적으로 관계가 없도록, 독립적으로 표현하기 때문이다. 본 논문에서는 임베딩 기법을 이용하여 서로 독립적으로 표현되었던 아이템들을 의미적으로 표현되는 벡터로 바꾸고, 최근 협업 필터링 기반의 추천 시스템으로 많이 사용되는 RNN을 사용하여 모델링한 시스템을 제안한다. 제안된 모델은 최근에 발표된 추천시스템들과 동등하거나 그 이상의 성능을 보일 것으로 기대된다.

A Study of Artificial Chatbot System for User Query Self-Learning (사용자 질의 자가학습형 인공지능 챗봇 시스템)

  • Park, Seong-Hyeon;Hong, Seok-Hun;Hwang, Su-Hyeon;Nasridinov, Aziz;Yoo, Kwan Hee;Hong, Jang-Eui
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.628-630
    • /
    • 2018
  • 인공지능에 대한 연구가 최근 이슈가 되면서, 딥러닝 기술의 비약적인 발전 덕분에 대화형 에이전트가 인터페이스의 역할을 하고 있다. 이 중에서 최근 여러 대학에서 서비스로 지원하는 챗봇 시스템의 문제점에 대하여 개선된 시스템을 제안하고, 이를 구현하여 실험을 통해 연구하고자 한다. 기존 챗봇 시스템이 가진 문제점을 보완한 시스템은 서비스 사용자가 질의하는 의도에 더 알맞은 응답을 제공하여 서비스 사용자의 불편함을 최소화하고, 사용성과 편의성을 최대화 하는 것을 목적으로 한다.

Development of CCTV for Identification of Maskless Wearers based on Deep Learning (딥러닝 기반 마스크 미착용자 식별 CCTV 개발)

  • Lee, Se-Hoon;Kwon, Hyeon-guen;Kim, Young-Jin;Jeong, Ji-Seok;Seo, Hee-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.317-318
    • /
    • 2020
  • 본 논문에서는 얼굴검출 후 MobilnetV2의 방법을 이용하여 적은 연산량으로 CCTV가 실시간으로 마스크 착용 유무를 판단할 수 있는 방법을 제시하였다. 이를 통해 현재 이슈가 되고있는 코로나19 등 전염병의 전염 위험이 있는 주요 장소에서 인공지능 CCTV가 마스크 미착용자를 식별해 알려줌으로써 마스크 미착용자를 관리할 수 있는 방법을 제공하였다.

  • PDF

REALM for Open-domain Question Answering of Korean (REALM을 이용한 한국어 오픈도메인 질의 응답)

  • Kan, Dong-Chan;Na, Seung-Hoon;Choi, Yun-Su;Lee, Hye-Woo;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.192-196
    • /
    • 2020
  • 최근 딥러닝 기술의 발전에 힘입어 오픈 도메인 QA 시스템의 발전은 가속화되고 있다. 특히 IR 시스템(Information Retrieval)과 추출 기반의 기계 독해 모델을 결합한 접근 방식(IRQA)의 경우, 문서와 질문 각각을 연속 벡터로 인코딩하는 IR 시스템(Dense Retrieval)의 연구가 진행되면서 검색 성능이 전통적인 키워드 기반 IR 시스템에 비해 큰 폭으로 상승하였고, 이를 기반으로 오픈 도메인 질의응답의 성능 또한 개선 되었다. 본 논문에서는 경량화 된 BERT 모델을 기반으로 하여 Dense Retrieval 모델 ORQA와 REALM을 사전 학습하고, 한국어 오픈 도메인 QA에서 QA 성능과 검색 성능을 도출한다. 실험 결과, 키워드 기반 IR 시스템 BM25를 기반으로 했던 이전 IRQA 실험결과와 비교하여 더 적은 문서로 더 나은 QA 성능을 보였으며, 검색 결과의 경우, BM25의 성능을 뛰어넘는 결과를 보였다.

  • PDF

An Integrated Detection and Response System Using YARA and RNN Based on the Distributed Structure and Traffic Patterns of the Mozi Botnet (Mozi Botnet의 분산 구조와 트래픽 특징에 기반한 YARA와 RNN의 통합적인 탐지 및 대응 시스템)

  • Min-AH Kwon;Jung-Eun Lee;Yu-Rim Yoe;Sung-Hwan Jeon;Dong-Young Yoo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.306-307
    • /
    • 2024
  • 이 연구에서는 IoT 보안을 강화하기 위해 Mozi 봇넷의 분산 구조와 트래픽 특징을 기반으로 YARA와 RNN을 통합한 탐지 및 대응 시스템을 제안한다. Mozi 봇넷의 분산 구조와 트래픽 특징을 분석한 후, 이를 기반으로 YARA 규칙과 RNN을 결합하여 악성 코드를 탐지하는 시스템을 설계한다. 실험 결과를 통해 이 시스템이 높은 정확도와 효율성을 보일 것으로 예상되며, 향후 연구에서는 다양한 딥러닝 기술을 활용하여 보다 효과적인 보안 대응 시스템을 개발할 것으로 기대된다.