• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.032 seconds

Individual Pig Detection Using Kinect Depth Information and Convolutional Neural Network (키넥트 깊이 정보와 컨볼루션 신경망을 이용한 개별 돼지의 탐지)

  • Lee, Junhee;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology to a livestock management system to minimize the damage resulting from such anomalies. Nonetheless, detecting each pig in a crowed pigsty is still challenging problem. In this paper, we propose a new Kinect camera and deep learning-based monitoring system for the detection of the individual pigs. The proposed system is characterized as follows. 1) The background subtraction method and depth-threshold are used to detect only standing-pigs in the Kinect-depth image. 2) The standing-pigs are detected by using YOLO (You Only Look Once) which is the fastest and most accurate model in deep learning algorithms. Our experimental results show that this method is effective for detecting individual pigs in real time in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (average 99.40% detection accuracies).

Design for Safety System get On or Off the Kindergarten Bus using User Authentication based on Deep-learning (딥러닝 기반의 사용자인증을 활용한 어린이 버스에서 안전한 승차 및 하차 시스템 설계)

  • Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.111-116
    • /
    • 2020
  • Recently, many safety accidents involving children shuttle buses take place. Without a teacher for help, a safety accident occurs when the driver can't see a child who is getting off in the blind spot of both frontside and backside. A deep learning-based smart mirror allows user authentication and provides various services. Especially, It can be a role of helper for children, and prevent accidents that can occur when drivers or assistant teachers do not see them. User authentication is carried out with children's face registered in advance. Safety accidents can be prevented by an approximate sensor and a camera in frontside and backside of the bus. This study suggests a way of checking out whether children are missed in the process of getting in and out of the bus, designs a system that reduce blind spots in the front and back of the vehicle, and builds a safety system that provide various services using GPS.

Development of Face Recognition System based on Real-time Mini Drone Camera Images (실시간 미니드론 카메라 영상을 기반으로 한 얼굴 인식 시스템 개발)

  • Kim, Sung-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.

Classification and analysis of error types for deep learning-based Korean spelling correction (딥러닝 기반 한국어 맞춤법 교정을 위한 오류 유형 분류 및 분석)

  • Koo, Seonmin;Park, Chanjun;So, Aram;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Recently, studies on Korean spelling correction have been actively conducted based on machine translation and automatic noise generation. These methods generate noise and use as train and data set. This has limitation in that it is difficult to accurately measure performance because it is unlikely that noise other than the noise used for learning is included in the test set In addition, there is no practical error type standard, so the type of error used in each study is different, making qualitative analysis difficult. This paper proposes new 'error type classification' for deep learning-based Korean spelling correction research, and error analysis perform on existing commercialized Korean spelling correctors (System A, B, C). As a result of analysis, it was found the three correction systems did not perform well in correcting other error types presented in this paper other than spacing, and hardly recognized errors in word order or tense.

Web Server based Hologram Image Production Pipeline System Implementation (웹 서버 기반의 홀로그램 영상 제작 파이프라인 시스템 구현)

  • Kim, Yongjung;Park, Chansoo;Shin, Seokyong;Kim, Jungho;Gentet, Philippe;Lee, Jiyoon;Kwon, Soonchul;Lee, Seunghyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.751-757
    • /
    • 2021
  • In this paper, we proposed a pipeline system for holographic image production in a web server-based environment. There are time and spatial constraints for the existing holographic image production. The purpose of the proposed system is to obtain high-quality holographic images by reducing accessibility to users. It is a structure in which a video captured by a user in a web environment is transmitted to a server and converted into a frame for holographic image production through post-production. For high-quality holographic image acquisition, post-processing uses a deep learning-based algorithm. The proposed system provides various service tools in the web environment for user convenience. Through this method, the user's accessibility is improved when producing holographic images because images are taken in a web environment rather than in a limited space.

A Study on the Design and Implementation of Multi-Disaster Drone System using Deep Learning-based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Park, Jonghyen;Jeong, Yerim;Jang, Seohyun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.556-559
    • /
    • 2020
  • 최근 태풍, 지진, 산불, 산사태, 전쟁 등 다양한 재난 상황으로 인한 인명피해와 자금 손실이 꾸준히 발생하고 있고 현재 이를 예방하고 복구하기 위해 많은 인력과 자금이 소요되고 있는 실정이다. 이러한 여러 재난 상황을 미리 감시하고 재난 발생의 빠른 인지 및 대처를 위해 본 논문에서는 인공지능 기반의 재난 드론 시스템을 설계 및 개발하였다. 본 연구에서는 사람이 감시하기 힘든 지역에 여러 대의 재난 드론을 이용하며 딥러닝 기반의 최단 경로 알고리즘을 적용해 각각의 드론이 최적의 경로로 효율적 탐색을 실시한다. 또한 드론의 근본적 문제인 배터리 용량 부족에 대한 문제점을 해결하기 위해 Ant Colony Optimization (ACO) 기술을 이용하여 각 드론의 최적 경로를 결정하게 된다. 제안한 시스템 구현을 위해 여러 재난 상황 중 산불 상황에 적용하였으며 전송된 데이터를 기반으로 산불지도를 만들고, 빔프로젝터를 탑재한 드론이 출동한 소방관에게 산불지도를 시각적으로 보여주었다. 제안한 시스템에서는 여러 대의 드론이 최적 경로 탐색 및 객체인식을 동시에 수행함으로써 빠른 시간 내에 재난 상황을 인지할 수 있다. 본 연구를 바탕으로 재난 드론 인프라를 구축하고 조난자 탐색(바다, 산, 밀림), 드론을 이용한 자체적인 화재진압, 방범 드론 등에 활용할 수 있다.

Collaborative Filtered Enhanced Recommendation System Using BERT (BERT를 이용한 협업 필터링 강화 추천 시스템)

  • Jin-Bae Kim;Young-Gon Kim;Jung-Min Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.61-67
    • /
    • 2024
  • In recent years, artificial intelligence and deep learning technologies have made significant advances, and the BERT model has been recognized for its excellent contextual understanding in natural language processing based on the transformer architecture. This performance has the potential to take traditional recommendation systems to the next level. In this study, we adopt an approach that combines a collaborative filtering approach with a deep learning model to improve the performance of recommendation systems. Specifically, we implemented a system that uses BERT to analyze the sentiment of user reviews and embed users based on these review sentiments to find and recommend users with similar tastes. In the process, we also utilized Elasticsearch, an open-source search engine, for quick search and retrieval of recommended results. The approach of analyzing users' textual data to increase the accuracy and personalization of recommendations will play an important role in improving the user experience on various online services in the future.

Parallel-Addition Convolution Algorithm in Grayscale Image (그레이스케일 영상의 병렬가산 컨볼루션 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.288-294
    • /
    • 2017
  • Recently, deep learning using convolutional neural network (CNN) has been extensively studied in image recognition. Convolution consists of addition and multiplication. Multiplication is computationally expensive in hardware implementation, relative to addition. It is also important factor limiting a chip design in an embedded deep learning system. In this paper, I propose a parallel-addition processing algorithm that converts grayscale images to the superposition of binary images and performs convolution only with addition. It is confirmed that the convolution can be performed by a parallel-addition method capable of reducing the processing time in experiment for verifying the availability of proposed algorithm.

Design and Implementation of Deep Learning based System for Object Identification of Multimedia Data (멀티미디어 데이터에서 객체 식별을 위한 딥러닝 기반의 시스템 설계 및 구현)

  • Ko, Sang-Gyun;Kim, Bongjae;Kim, Jeong-Dong
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.606-608
    • /
    • 2018
  • 최근 CCTV나 블랙박스 등 멀티미디어 데이터를 생성해내는 장치의 사용이 늘어나고 있다. 이러한 대용량 멀티미디어 데이터가 증가함에 따라 사용자가 동영상과 같은 멀티미디어 데이터 내의 객체를 식별하기 위해서는 많은 시간을 할애하여 매뉴얼하게 일일이 찾아야 하는 한계점이 있다. 본 논문에서는 사용자가 동영상 및 이미지에서와 같은 멀티미디어 데이터에서 객체를 자동으로 식별할 수 있 수 있는 딥러닝 기반의 객체 식별 및 검색 모델을 제안한다. 제안하는 객체 식별 검색은 이미지 검색과 동영상 검색을 지원한다. 이미지 검색에서는 이미지에 존재하는 동일한 객체를 검색 대상 이미지들에서 객체를 식별하고, 이미지에 존재하는 객체를 검색하여 결과로 반환한다. 또한 동영상 검색에서는 동영상에서 검색하고자 하는 객체를 식별하고 객체가 출현하는 시간을 전처리과정을 통해 기록하며, 검색하고자 하는 동영상 내에 존재하는 객체의 검색이 가능하다. 따라서 사용자가 동영상에서 객체의 검색 시 키워드 검색이 가능하여 동영상을 모두 재생하서 객체를 식별해야 하는 번거로움을 해결할 수 있다.

Development of Virtual Simulator and Database for Deep Learning-based Object Detection (딥러닝 기반 장애물 인식을 위한 가상환경 및 데이터베이스 구축)

  • Lee, JaeIn;Gwak, Gisung;Kim, KyongSu;Kang, WonYul;Shin, DaeYoung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • This study proposes a method for creating learning datasets to recognize obstacles using deep learning algorithms in automated construction machinery or an autonomous vehicle. Recently, many researchers and engineers have developed various recognition algorithms based on deep learning following an increase in computing power. In particular, the image classification technology and image segmentation technology represent deep learning recognition algorithms. They are used to identify obstacles that interfere with the driving situation of an autonomous vehicle. Therefore, various organizations and companies have started distributing open datasets, but there is a remote possibility that they will perfectly match the user's desired environment. In this study, we created an interface of the virtual simulator such that users can easily create their desired training dataset. In addition, the customized dataset was further advanced by using the RDBMS system, and the recognition rate was improved.