• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.029 seconds

A palm information-based identity recognition deep learning model using a multi-channel image (멀티 채널 이미지를 이용한 손바닥 정보 기반 신원 인식 딥러닝 모델)

  • Kim, Beomjun;Kim, Inki;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.93-96
    • /
    • 2022
  • 본 논문에서는 카메라 센서만을 이용하여 손바닥 사진을 촬영하고 추출된 데이터들을 합성하여 멀티 채널 이미지를 생성 및 분류 모델에 입력하여 신원을 확인하는 딥러닝 모델을 제안한다. 이 모델은 손바닥 사진이 입력되면 손바닥 및 손금 세그멘테이션을 이용하여 마스크 이미지를 추출하고 단일 채널로 구성된 이미지들을 멀티 채널 이미지로 합성/재구성하여 신원을 분류하는 딥러닝 모델이다. 이는 카메라 센서 외 다른 센서가 필요 없다는 장점을 가지고 있으며, 비접촉 신원 인식 시스템에 적용할 수 있다.

  • PDF

Research Paper Classification Scheme based on CNN with LSTM and GRU (CNN과 LSTM 및 GRU 기반 연구 논문 분류 시스템의 설계 및 구현)

  • Dipto, Biswas;Kang, Jihun;Gil, Joon-Min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.612-614
    • /
    • 2022
  • 최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.

Focal Calibration Loss-Based Knowledge Distillation for Image Classification (이미지 분류 문제를 위한 focal calibration loss 기반의 지식증류 기법)

  • Ji-Yeon Kang;Jae-Won Lee;Sang-Min Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.695-697
    • /
    • 2023
  • 최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.

2D Barcode Detection using Deep learning (딥러닝 기법을 이용한 2차원 바코드 검출)

  • Pak, Myeong-Suk;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.1001-1002
    • /
    • 2017
  • 2차원 바코드는 1차원 바코드의 데이터 용량의 한계를 극복하여 최근 많이 사용되고 있다. 복잡한 환경에서 바코드의 인식을 위해서는 바코드 영역 검출이 중요한 단계이다. 본 논문에서는 딥러닝 기법을 이용하여 QR코드 검출 시스템을 구현한다. 실험은 실생활에서 카메라로 촬영한 바코드 영상을 이용한다.

A Hybrid Recommender System based on Deep Learning using Contents Preference (컨텐츠 선호도 정보를 이용한 딥러닝 기반의 하이브리드 추천 시스템)

  • Chae, Dong-Kyu;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.418-419
    • /
    • 2018
  • 본 논문에서는 사용자의 상품에 대한 평점 정보와 상품의 컨텐츠 정보를 모두 이용하는 하이브리드 추천 모델에 대해서 논의한다. 기존 논문들과는 다르게, 본 논문은 추천의 정확도를 높이기 위해 사용자가 상품의 컨텐츠 (예를 들면, 영화의 장르 또는 상품의 카테고리 등) 에 가질 수 있는 선호도를 예측하고, 이를 추가적으로 활용할 수 있는 딥러닝 기반의 추천 모델을 제안한다. 실세계의 데이터를 이용해서 제안하는 방법의 우수성을 보인다.

해상 교통정보를 활용한 선박 경계감시 시스템 개발 I

  • 양영훈;박세길;조득재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.212-213
    • /
    • 2023
  • 항·포구내에서 주.야간에 걸쳐 미등록 선박을 검출하기 위해, 가시광 및 IR, 라이다 센서를 통해 선박 영상 및 거리정보를 획득하고, 딥러닝 기술을 적용하여 선박의 외관에 대한 특징 분석 및 선박에 표기된 문자열의 인식, 선박의 크기 측정을 통해 선박을 분류하고 특정하는 기술 개발

  • PDF

A Study on Artificial Intelligence-based Automated Integrated Security Control System Model (인공지능 기반의 자동화된 통합보안관제시스템 모델 연구)

  • Wonsik Nam;Han-Jin Cho
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.45-52
    • /
    • 2024
  • In today's growing threat environment, rapid and effective detection and response to security events is essential. To solve these problems, many companies and organizations respond to security threats by introducing security control systems. However, existing security control systems are experiencing difficulties due to the complexity and diverse characteristics of security events. In this study, we propose an automated integrated security control system model based on artificial intelligence. It is based on deep learning, an artificial intelligence technology, and provides effective detection and processing functions for various security events. To this end, the model applies various artificial intelligence algorithms and machine learning methods to overcome the limitations of existing security control systems. The proposed model reduces the operator's workload, ensures efficient operation, and supports rapid response to security threats.

Cryptocurrency automatic trading research by using facebook deep learning algorithm (페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.359-364
    • /
    • 2021
  • Recently, research on predictive systems using deep learning and machine learning of artificial intelligence is being actively conducted. Due to the development of artificial intelligence, the role of the investment manager is being replaced by artificial intelligence, and due to the higher rate of return than the investment manager, algorithmic trading using artificial intelligence is becoming more common. Algorithmic trading excludes human emotions and trades mechanically according to conditions, so it comes out higher than human trading yields when approached in the long term. The deep learning technique of artificial intelligence learns past time series data and predicts the future, so it learns like a human and can respond to changing strategies. In particular, the LSTM technique is used to predict the future by increasing the weight of recent data by remembering or forgetting part of past data. fbprophet, an artificial intelligence algorithm recently developed by Facebook, boasts high prediction accuracy and is used to predict stock prices and cryptocurrency prices. Therefore, this study intends to establish a sound investment culture by providing a new algorithm for automatic cryptocurrency trading by analyzing the actual value and difference using fbprophet and presenting conditions for accurate prediction.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

WiFi CSI Data Preprocessing and Augmentation Techniques in Indoor People Counting using Deep Learning (딥러닝을 활용한 실내 사람 수 추정을 위한 WiFi CSI 데이터 전처리와 증강 기법)

  • Kim, Yeon-Ju;Kim, Seungku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1890-1897
    • /
    • 2021
  • People counting is an important technology to provide application services such as smart home, smart building, smart car, etc. Due to the social distancing of COVID-19, the people counting technology attracted public attention. People counting system can be implemented in various ways such as camera, sensor, wireless, etc. according to service requirements. People counting system using WiFi AP uses WiFi CSI data that reflects multipath information. This technology is an effective solution implementing indoor with low cost. The conventional WiFi CSI-based people counting technologies have low accuracy that obstructs the high quality service. This paper proposes a deep learning people counting system based on WiFi CSI data. Data preprocessing using auto-encoder, data augmentation that transform WiFi CSI data, and a proposed deep learning model improve the accuracy of people counting. In the experimental result, the proposed approach shows 89.29% accuracy in 6 subjects.