• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.037 seconds

An Unmanned Checkout Counter using Deep Learning and Image Processing (딥러닝과 영상처리를 활용한 무인계산시스템)

  • Kim, Hongjae;Choi, Heewoong;Youn, Bora;Kim, Okgeon;Cho, Joongwhee
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.975-977
    • /
    • 2018
  • 본 논문은 대형마트와 같은 유통업계에서 무인계산시스템의 자동화로 소비자의 계산 편리성 증대를 위한 딥러닝과 영상처리를 활용한 무인계산시스템을 제안한다. 소비자가 무인계산시스템의 컨베이어 벨트 위에 계산할 물품을 올리면 벨트 끝에 위치한 카메라로 이동하여 촬영한 물품의 이미지를 딥러닝과 영상처리로 분석하여 제품의 리스트를 제공, 결제가 완료되면 서버에 전송하여 재고를 관리하고 발주가 필요한 제품은 자동으로 발주하는 시스템이다.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

Porcine Wasting Diseases Detection using Light Weight Deep Learning (경량 딥러닝 기반의 돼지 호흡기 질병 탐지)

  • Hong, Minki;Ahn, Hanse;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.964-966
    • /
    • 2020
  • 전염성이 매우 강한 돼지 호흡기 질병을 빠른 시간 내에 정확하게 탐지하지 못한다면 해당 돈사는 물론 타지역으로 전파되어 심각한 경제적 손실이 발생한다. 본 논문은 이와 같은 돼지 호흡기 질병을 저가격의 임베디드 보드에서도 탐지가 가능한 시스템을 제안한다. 해당 시스템은 돈사에 설치한 소리센서로부터 돼지의 이상 소리를 자동으로 탐지한 후, 탐지한 소리 시그널을 스펙트로그램으로 변환한다. 마지막으로, 스펙트로그램은 딥러닝 알고리즘에 적용되어 돼지 호흡기 질병을 탐지 및 식별한다. 이 때, 일반 컴퓨터 환경에 비해 비용 부담이 적은 임베디드 환경에서 실행되기 위하여 경량 딥러닝 모델인 MnasNet 을 사용하였으며, 임베디드 보드인 NVIDIA TX-2 에서 해당 시스템의 호흡기 질병 식별 성능을 확인한 결과 높은 탐지 성능과 실시간 탐지가 가능함을 확인하였다.

Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System (딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현)

  • Ham, Kyoung-Youn;Kang, Gil-Nam;Lee, Jang-Hyeon;Lee, Jung-Woo;Park, Dong-Hoon;Ryoo, Myung-Chun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

A system for simplifying large-scale household waste (household appliances, furniture, etc.) using data analysis (데이터 분석을 활용한 생활 대형 폐기품(가전, 가구 등) 간소화 시스템)

  • Oh, Jieun;Kang, Woo-Il;Kim, Ga-Hee;Kim, Ji-Hyeon;Kim, Chae-min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1025-1027
    • /
    • 2022
  • 도시화가 급속도로 진행됨에 따라서 일상생활에서 생활폐기물의 관리와 처리에 대한 문제가 심각해지고 있다. 이 문제를 해결하고자 어플리케이션을 통해 생활폐기물 처리를 쉽게 할 수 있는 시스템을 제안한다. '싹처리'는 편리성, 정확성, 확장성, 수익성을 가지고 (중)대형 생활 폐기물 처리하는 딥러닝 어플리케이션이다. 어플리케이션 내의 저장된 딥러닝 과정으로 학습되어진 생활폐기물 분류 모델을 통해 폐기물 사진을 자동 인식하는 과정으로 누구나 쉽게 폐기물 배출을 신청할 수 있다. 정확한 딥러닝 알고리즘과 전이학습, 데이터 검수 등을 통해 높은 성능의 사물 자동 인식을 할 수 있다. 이 시스템을 통해 임산부, 장애인, 독거노인 등의 사회적 약자는 불필요한 과정 없이 손쉽게 폐기물을 처리할 수 있고, 더 나아가 중고시장의 활성화에 기여할 수 있는 가치가 있다.

Selective ATM UI Simplification System Using Deep Learning Image Recognition (딥러닝 모델을 이용한 선택적 ATM UI 간편화 시스템)

  • Hyeok-Min Kwon;Dong-Unk Kim;Seong-Kyoo Kim;Gang-Min Lee;San-Ha Park;Hae-Jun Park;Myung-Chun Ryoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.263-264
    • /
    • 2023
  • 오늘날 출산율 감소와 의료기술 등의 발달에 따라 고령화 사회 현상이 급부상하고 있으며, 이 비율은 계속 증가할 것이다. 또한 노인 인구가 많아지는 만큼 노안을 가진 사람들도 많아진다. 고령화 사회가 지속되는 만큼 고령층이 이용할 수 있는 디지털 기기 또한 많아져야 하지만 그렇지 않다. 그중에 하나인 ATM은 고령층을 제외한 고객들은 모바일뱅킹과 같은 서비스를 이용하고 고령층이 주로 ATM을 이용한다. 주요 고객인 고령층이 사용하는 ATM이지만 고령층을 배려한 ATM은 찾아보기 힘들다. 이에 본 논문에서는 딥러닝 모델을 이용하여 노안을 갖고 있거나 고령층이라는 것을 나이로 판단하여 고령층과 일반적인 노안을 갖는 연령층이 보다 쉽게 ATM을 이용 할 수 있는 선택적 ATM UI 간편화 시스템을 구축하였다.

  • PDF

Design of a Zone-based Population Estimation System using Deep Learning Image Recognition for Digital Twin (딥러닝 영상인식을 이용한 디지털 트윈 기반 구역별 유동 인구 추정 시스템 설계)

  • Ok-Kyoon Ha;Jin-chan Kim;Yong-jin Kim;Yong-hun Ok;Dong-hun Na;Uk-ryeol Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.41-42
    • /
    • 2023
  • 인구 밀집도가 높은 곳에서의 안전사고 대응과 이에 대한 예방을 위한 기술 및 해결 방안의 필요성이 증가하고 있다. 이를 위한 기존의 기술들은 지능형 CCTV 기반의 경고 알림을 울리는 방식과 스마트폰의 신호를 수집하여 유동인구를 측정하는 기술 등이 사용되고 있다. 그러나 군중 밀집 사고의 원인인 병목현상과 군중 난류 현상까지 대응하지는 못하는 문제점이 있다. 본 논문에서는 CCTV로부터 수집된 영상 정보만으로 딥러닝 영상인식 기술을 이용하여 병목현상이 일어나기 쉬운 출입구의 유·출입 인구 카운팅과 광장의 밀집도 분석을 디지털 트윈 기반으로 실시하고 이를 통해 위험 상황 발생 시 출입구의 통제와 대피를 위한 안내가 가능한 시스템을 제시한다. 제시하는 시스템은 유동 인구가 많고 인구의 급격한 밀집으로 인해 발생할 수 있는 안전사고의 예방과 이를 해결하기 위한 통제 및 안내를 위한 대처 방법으로 활용할 수 있다.

  • PDF

Implementation of Computer Vision and Deep Learning-Based Golfer Pose-Estimation System And Coaching System (컴퓨터 비전과 딥러닝 라이브러리 기반 골퍼 자세 판단 및 코칭 시스템)

  • Byeon, Woo-Jin;Shim, Young-Seon;You, Hye-Seung;Kang, Seokhun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1040-1043
    • /
    • 2020
  • 본 논문에서는 골퍼의 자세 교정을 위해 레슨 프로 혹은 코치가 수행하는 교육을 담당하는 시스템을 구현한다. 이 시스템은 골프를 배우고자 하는 골퍼와 자세를 교정하고자 하는 골퍼를 대상으로 한다. 프로 골퍼의 스윙자세 영상을 촬영하고 딥러닝 라이브러리로 관절, 클럽의 위치를 디지털로 식별하여 표준 자세 정보를 입수한다. 그리고 사용자의 영상을 촬영하여 표준자세 정보와 비교 후 올바른 자세를 도표 및 시각적으로 제공 할 수 있도록 한다. 사람이 하는 방식 보다 객관적이고, 센서방식 보다 경제적인 시스템으로 골프교육산업의 활성화에 기여 할 수 있을 것이다.

SystemC-based CNN Simulator (SystemC기반 CNN 시뮬레이터 구현)

  • Kim, Jinyoung;Lee, Seungsu;Kim, Yejun;Lim, Seung-Ho;Cho, Sang-Young
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.30-33
    • /
    • 2020
  • 최근 엣지 컴퓨팅과 같은 임베디드 디바이스에서 CNN과 같은 딥러닝 모듈을 수행하기 위해서 하드웨어 설계 및 구현이 많이 진행되고 있다. 이러한 임베디드 시스템에 필요한 CNN모듈을 위한 하드웨어 설계를 위해서 먼저 모델링을 통해서 시뮬레이션이 필요하다. 본 논문에서는 오픈 라이센스를 이용한 RISC-V로 딥러닝 시뮬레이터를 제작하였다. SystemC로 구현된 RISC-V를 Virtual Platform로 시뮬레이터의 제작을 하여 시뮬레이팅을 하였고, SystemC의 특징인 모듈화와 모듈간 통신에 유의하여 시스템을 구성하였다. CNN 알고리즘을 참조하여 Convolution, Activation, Pooling 연산의 기능을 하는 시스템을 구성하였다.