• Title/Summary/Keyword: 딥러닝 모델 비교

Search Result 607, Processing Time 0.034 seconds

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

Comparison of Sentiment Classification Performance of for RNN and Transformer-Based Models on Korean Reviews (RNN과 트랜스포머 기반 모델들의 한국어 리뷰 감성분류 비교)

  • Jae-Hong Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.693-700
    • /
    • 2023
  • Sentiment analysis, a branch of natural language processing that classifies and identifies subjective opinions and emotions in text documents as positive or negative, can be used for various promotions and services through customer preference analysis. To this end, recent research has been conducted utilizing various techniques in machine learning and deep learning. In this study, we propose an optimal language model by comparing the accuracy of sentiment analysis for movie, product, and game reviews using existing RNN-based models and recent Transformer-based language models. In our experiments, LMKorBERT and GPT3 showed relatively good accuracy among the models pre-trained on the Korean corpus.

Development of Fire Detection Model for Underground Utility Facilities Using Deep Learning : Training Data Supplement and Bias Optimization (딥러닝 기반 지하공동구 화재 탐지 모델 개발 : 학습데이터 보강 및 편향 최적화)

  • Kim, Jeongsoo;Lee, Chan-Woo;Park, Seung-Hwa;Lee, Jong-Hyun;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.320-330
    • /
    • 2020
  • Fire is difficult to achieve good performance in image detection using deep learning because of its high irregularity. In particular, there is little data on fire detection in underground utility facilities, which have poor light conditions and many objects similar to fire. These make fire detection challenging and cause low performance of deep learning models. Therefore, this study proposed a fire detection model using deep learning and estimated the performance of the model. The proposed model was designed using a combination of a basic convolutional neural network, Inception block of GoogleNet, and Skip connection of ResNet to optimize the deep learning model for fire detection under underground utility facilities. In addition, a training technique for the model was proposed. To examine the effectiveness of the method, the trained model was applied to fire images, which included fire and non-fire (which can be misunderstood as a fire) objects under the underground facilities or similar conditions, and results were analyzed. Metrics, such as precision and recall from deep learning models of other studies, were compared with those of the proposed model to estimate the model performance qualitatively. The results showed that the proposed model has high precision and recall for fire detection under low light intensity and both low erroneous and missing detection capabilities for things similar to fire.

Adversarial Training Method for Handling Class Imbalance Problems in Dialog Datasets (대화 데이터셋의 클래스 불균형 문제 보정을 위한 적대적 학습 기법)

  • Cho, Su-Phil;Choi, Yong Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.434-439
    • /
    • 2019
  • 딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.

  • PDF

A Study on the Improvement of YOLOv7 Inference Speed in Jetson Embedded Platform (Jetson 임베디드 플랫폼에서의 YOLOv7 추론 속도 개선에 관한 연구)

  • Bo-Chan Kang;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.154-155
    • /
    • 2023
  • 오픈 소스인 YOLO(You Only Look Once) 객체 탐지 알고리즘이 공개된 이후, 산업 현장에서는 고성능 컴퓨터에서 벗어나 효율과 특수한 환경에 사용하기 위해 임베디드 시스템에 도입하고 있다. 그러나, NVIDIA의 Jetson nano의 경우, Pytorch의 YOLOv7 딥러닝 모델에 대한 추론이 진행되지 않는다. 따라서 제한적인 전력과 메모리, 연산능력 최적화 과정은 필수적이다. 본 논문은 NVIDIA의 임베디드 플랫폼 Jetson 계열의 Xavier NX, Orin AGX, Nano에서 딥러닝 모델을 적용하기 위한 최적화 과정과 플랫폼에서 다양한 크기의 YOLOv7의 PyTorch 모델들을 Tensor RT로 변환하여 FPS(Frames Per Second)를 측정 및 비교한다. 측정 결과를 통해, 각 임베디드 플랫폼에서 YOLOv7 모델의 추론은 Tensor RT는 Pytorch에서 약 4.1배 적은 FPS 변동성과 약 2.25배 정도의 FPS 속도향상을 보였다.

Estimation of Fine Dust Concentration Using Photo Data : Application of Deep Learning (사진 데이터로 본 미세먼지 단계 추정 시스템 : 딥러닝 기술의 적용)

  • Hyeon-Ji Park;Ji-Young Jeong;Yu-Jung Kim;Hyun-Soo Park;Hyun-Ji, Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.870-871
    • /
    • 2023
  • 미세먼지 단계를 예측하는 딥러닝 기반 시스템을 개발하고 그 성능을 평가하는 연구를 진행했다. 연구에서 320개의 풍경 사진 데이터를 수집하고, 해당 시점의 미세먼지 농도를 측정하여 "좋음" 또는 "나쁨"으로 분류했다. 데이터 전처리 단계에서는 특히 하늘 이미지의 특성을 고려하여 다양한 전처리 기법을 적용하였다. 다섯 가지 이미지 데이터 모델을 사용하여 이미지를 분류하고 미세먼지 단계를 예측하는 모델을 개발하였으며, 또 이 모델들을 다양한 기법으로 앙상블 해보며 성능을 비교했다. 그 결과, Random Forest를 이용한 앙상블 모델이 제일 뛰어난 예측 성능을 보였다. 이러한 연구 결과는 미세먼지 모니터링 및 예측에 유용한 시스템 개발의 가능성을 제시한다.

Interference Cancellation Scheme of End-to-End Method in Power Line Communication System for Smart Grid (스마트 그리드 시스템을 위한 전력선 통신 시스템의 종단 간 방식의 간섭 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2019
  • In this paper, we propose the interference cancellation scheme of end-to-end method algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information of receiver by applying a deep learning model at the receiver. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Comparison of CNN-based models for apple pest classification (사과 병해충 분류를 위한 CNN 기반 모델 비교)

  • Lee, Su-min;Lee, Yu-hyeon;Lee, Eun-sol;Han, Se-yun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.460-463
    • /
    • 2022
  • 세계에서 가장 중요한 온대 과일 작물 중 하나인 사과의 생산성과 품질은 병해충 여부에 큰 영향을 받는다. 이를 진단하기 위해서는 효율적이고 많은 전문 지식과 상당한 시간이 필요하다. 그러므로 이를 해결하기 위해 효율적이고 정확하게 다양한 병해충을 진단하는 시스템이 필요하다. 본 논문에서는 이미지 분석에 큰 효율을 보인 딥러닝 기반 CNN 들을 비교 분석하여 사과의 병해충 여부를 판별하고 최적의 모델을 제시한다. 딥러닝 기반 CNN 구조를 가진 AlexNet, VGGNet, Inception-ResNet-v2, DenseNet 을 채택해 사과 병해충 분류 성능 평가를 진행했다. 그 결과 DenseNet 이 가장 우수한 성능을 보여주었다.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Deep Learning based User Anomaly Detection Performance Evaluation to prevent Ransomware (랜섬웨어 방지를 위한 딥러닝 기반의 사용자 비정상 행위 탐지 성능 평가)

  • Lee, Ye-Seul;Choi, Hyun-Jae;Shin, Dong-Myung;Lee, Jung-Jae
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • With the development of IT technology, computer-related crimes are rapidly increasing, and in recent years, the damage to ransomware infections is increasing rapidly at home and abroad. Conventional security solutions are not sufficient to prevent ransomware infections, and to prevent threats such as malware and ransomware that are evolving, a combination of deep learning technologies is needed to detect abnormal behavior and abnormal symptoms. In this paper, a method is proposed to detect user abnormal behavior using CNN-LSTM model and various deep learning models. Among the proposed models, CNN-LSTM model detects user abnormal behavior with 99% accuracy.