• 제목/요약/키워드: 딥러닝 네트워크

검색결과 496건 처리시간 0.03초

GAN 모델에서 손실함수 분석 (A Study on the Loss Functions of GAN Models)

  • 이초연;박지수;손진곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.942-945
    • /
    • 2019
  • 현재 딥러닝은 컴퓨터 분야에서 이미지 처리 방법으로 활용도가 높아지면서 딥러닝 모델 개발 연구가 활발히 진행되고 있다. 딥러닝 모델 중에서 이미지 생성모델은 대표적으로 GAN(Generative Adversarial Network, 생성적 적대 신경망) 모델을 활용하고 있다. GAN은 생성기 네트워크와 판별기 네트워크를 이용하여 진짜 같은 이미지를 생성한다. 생성된 이미지는 실제 이미지와의 오차를 최소화해야 하며 이때 사용하는 함수를 손실함수라고 한다. GAN에서 손실함수는 이미지를 생성하는 학습이 불안정하여 이미지 품질이 떨어지는 문제가 있다. 개선된 GAN 관련 연구가 진행되고 있지만 완전한 문제 해결에는 부족하다. 본 논문은 7개의 GAN 모델에서 사용하는 손실함수를 분류하고 특징을 분석한다.

오토인코더를 이용한 CNN 이미지 분류 네트워크의 feature 압축 방안 (Compression method of feature based on CNN image classification network using Autoencoder)

  • 고성영;권승욱;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.280-282
    • /
    • 2020
  • 최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.

  • PDF

Convolution Neural Network와 Recurrent Neural Network를 활용한 네트워크 패킷 분류 (Network Packet Classification Using Convolution Neural Network and Recurrent Neural Network)

  • 임현교;김주봉;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.16-18
    • /
    • 2018
  • 최근 네트워크 상에 새롭고 다양한 어플리케이션들이 생겨나면서 이에 따른 적절한 어플리케이션별 서비스 제공을 위한 패킷 분류 방법이 요구되고 있다. 이로 인하여 딥 러닝 기술이 발전 하면서 이를 이용한 네트워크 트래픽 분류 방법들이 제안되고 있다. 따라서, 본 논문에서는 딥 러닝 기술 중 Convolution Neural Network 와 Recurrent Neural Network 를 동시에 활용한 네트워크 패킷 분류 방법을 제안한다.

주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축 (Deep Neural Network compression based on clustering of per layer in frequency domain)

  • 홍민수;김성제;정진우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.64-67
    • /
    • 2020
  • 최근 다양한 분야에서 딥 러닝 기반의 많은 연구가 진행되고 있으며 이에 따라 딥 러닝 모델의 경량화를 통해 제한된 메모리를 가진 하드웨어에 올릴 수 있는 경량화 된 딥 뉴럴 네트워크(DNN)를 개발하는 연구도 활발해졌다. 이에 본 논문은 주파수 영역에서의 군집화 기반 계층별 딥 뉴럴 네트워크 압축을 제안한다. 이산 코사인 변환, 양자화, 군집화, 적응적 엔트로피 코딩 과정을 각 모델의 계층에 순차적으로 적용하여 DNN이 차지하는 메모리를 줄인다. 제안한 알고리즘을 통해 VGG16을 손실률은 1% 미만의 손실에서 전체 가중치를 3.98%까지 압축, 약 25배가량 경량화 할 수 있었다.

  • PDF

경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술 (Deep Learning-based Real-Time Super-Resolution Architecture Design)

  • 안세현;강석주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.228-229
    • /
    • 2020
  • 최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.

  • PDF

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.29-38
    • /
    • 2022
  • 본 논문에서는 멀티 센서가 장착된 스마트 인솔로 측정한 보행 데이터에 대해 앙상블 딥러닝 네트워크를 이용하여 보행의 타입을 분류하는 시스템을 제안한다. 보행 타입 분류 시스템은 인솔에 의해 측정된 데이터를 정규화하는 부분과 딥러닝 네트워크를 이용하여 보행의 특징을 추출하는 부분, 그리고 추출된 특징을 입력으로 보행의 타입을 분류하는 부분으로 구성되어 있다. 서로 다른 특성을 가지는 CNN과 LSTM을 기반으로 하는 네트워크를 독립적으로 학습하여 두 종류의 보행 특징 맵을 추출하였으며, 각각의 분류 결과를 결합하여 최종적인 앙상블 네트워크의 분류 결과를 도출하였다. 20~30대 성인의 걷기, 뛰기, 빠르게 걷기, 계단 오르기와 내려가기, 언덕 오르기와 내려가기의 7종류의 보행에 대해, 스마트 인솔을 이용하여 실측한 멀티 센서 데이터를 제안한 앙상블 네트워크로 분류해 본 결과 90% 이상의 높은 분류율을 보이는 것을 확인하였다.

딥러닝 기반의 얼굴인증 시스템 설계 및 구현 (Design and Implementation of a Face Authentication System)

  • 이승익
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2020
  • 본 논문에서는 딥러닝 프레임워크 기반의 얼굴인증 시스템에 대하여 제안한다. 제안 시스템은 딥러닝 알고리즘을 활용하여 얼굴영역 검출과 얼굴 특징 추출을 수행하고, 결합베이시안 학습 모델을 이용하여 얼굴인증을 수행한다. 제안 얼굴인증 알고리즘에 대한 성능 평가는 다양한 얼굴 사진들로 구성된 데이터베이스를 이용하여 수행하였으며, 한 명에 대한 얼굴 영상은 2장으로 구성하였다. 또한 얼굴인증 실험은 딥 뉴럴 네트워크를 통한 2048차원의 특징과 그 유사성을 측정하기 위해 결합베이시안 알고리즘을 적용하였으며, 얼굴인증에 실패한 동일오율을 계산함으로써 성능평가를 수행하였다. 실험 결과, 딥러닝 특징과 결합베이시안 알고리즘을 사용한 제안 방법은 1.2%의 동일오율을 보였다.

딥 러닝 기반의 오디오 장르 및 품질의 다중 분류 기술 (Multiple Classification of Audio Genre and Quality based on Deep Learning)

  • 신성현;조효진;장원;박호종
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.53-54
    • /
    • 2018
  • 본 논문에서는 스펙트로그램을 이용하여 딥 러닝 기반으로 오디오 장르와 품질의 다중 정보를 동시에 분류하는 기술을 제안한다. 기존 딥 러닝 기반의 오디오 정보 인식 기술은 각각의 정보 인식을 목표로 독립 네트워크를 설계하고, 여러 정보를 동시에 인식하기 위하여 각각에 특화된 여러 네트워크를 사용한다. 이러한 문제점을 보완하기 위해 본 논문에서는 디지털 오디오의 대표 특성인 스펙트로그램을 기반으로 범용성이 있는 특성을 추출하고, 단일 네트워크로 학습시켜 장르 및 품질을 동시에 분류하는 다중 분류 기술을 제안한다. 제안하는 방법으로 단일 분류 성능과 유사한 다중 분류 성능을 얻을 수 있다.

  • PDF

히스토그램 손실함수와 순차적 작업을 이용한 CCTV 영상 화질 향상 (CCTV Image Quality Enhancement using Histogram Loss and Sequential Task)

  • 정민교;최종인;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.217-220
    • /
    • 2022
  • 본 논문에서는 CCTV 영상 화질을 향상하고 해상도를 높이기 위해 딥 러닝(Deep Learning)을 이용하여 잡음 제거(Denoising) 와 초해상도(Super-resolution) 작업을 수행한다. 데이터 증강(Data Augmentation)을 통한 초해상도 성능 향상을 위해서 잡음 제거 네트워크의 출력 영상을 초해상도 네트워크의 입력으로 사용하는 순차적 작업을 사용한다. 또한 딥 러닝을 이용한 영상처리에서 발생하는 평균 밝기 오차 문제를 해결하기 위한 손실함수(Loss Function)와 두 가지 이상의 순차적인 딥 러닝 작업에서 발생하는 문제점을 극복하기 위한 손실함수를 제안한다. 제안하는 손실함수는 네트워크의 출력 영상과 타겟 영상의 밝기 오차를 줄이는 것이 가능하고, 순차적 작업에서 보다 정확한 모델 성능 판단이 가능하다.

  • PDF

Attention 모델을 이용한 단일 영상 초고해상도 복원 기술 (A Study on Single Image Super Resolution Using Attention Model)

  • 문환복;윤상민
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.537-539
    • /
    • 2020
  • 단일 영상 기반 초고해상도 복원은 컴퓨터 비전 및 영상처리 분야의 중요한 기초 및 응용 분야 중 하나이며, 딥러닝에 대한 연구가 발전됨에 따라 이를 이용한 다양한 연구들이 활발히 진행되고 있다. 기존 딥러닝 기반 연구들은 복원 성능을 높이기 위해서 다양한 구조의 네트워크를 설계하거나 네트워크를 학습하는 알고리즘들을 중점으로 연구되어 왔다. 최근 들어 네트워크 구조나 설계 이외에 네트워크를 통과하는 정보의 집합체인 특징 맵에 관한 연구들이 진행되고 있다. Attention은 특징 맵에서 채널 간의 관계를 이용하여 특정 채널을 강조하거나 또는 공간 정보를 강조하는 방식으로 특징 맵의 정보를 잘 활용하도록 하여 전체적인 네트워크의 성능을 향상시킨다. 본 논문은 단일 영상 기반 초고해상도 복원 네트워크를 기반으로 다양한 Attention방법들을 적용하고 성능을 비교 및 분석한다.

  • PDF