• Title/Summary/Keyword: 딥러닝 기반 제어

Search Result 84, Processing Time 0.027 seconds

Design of Household Trash Collection Robot using Deep Learning Object Recognition (딥러닝 객체 인식을 이용한 가정용 쓰레기 수거 로봇 설계)

  • Ju-hyeon Lee;Dong-myung Kim;Byeong-chan Choi;Woo-jin Kim;Kyu-ho Lee;Jae-wook Shin;Tae-sang Yun;Kwang Sik Youn;Ok-Kyoon Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.113-114
    • /
    • 2023
  • 가정용 생활 쓰레기 수거 작업은 야간이나 이른 새벽에 이루어지고 있어 환경미화원의 안전사고와 수거 차량으로 인한 소음 문제가 빈번하게 발생한다. 본 논문에서는 딥러닝 기반의 영상 인식을 활용하여 종량제 봉투를 인식하고 수거가 가능한 생활 쓰레기 수거 로봇의 설계를 제시한다. 제시하는 생활 쓰레기 수거 로봇은 지정 구역을 자율주행하며 로봇에 장착된 카메라를 이용해 학습된 모델을 기반으로 가정용 쓰레기 종량제 봉투를 검출한다. 이를 통해 처리 대상으로 지정된 종량제 봉투와 로봇 팔 사이의 거리를 카메라를 활용하여 얻은 깊이 정보와 2차원 좌표를 토대로 목표 위치를 예측해 로봇 팔의 관절을 제어하여 봉투를 수거한다. 해당 로봇은 생활 쓰레기 수거 작업 과정에서 환경미화원을 보조하여 미화원의 안전 확보와 소음 저감을 위한 기기로 활용될 수 있다.

  • PDF

Deep Learning-based PID Control for ETB with Parameter Variation and Nonlinear Torque

  • Kap Rai Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.57-66
    • /
    • 2024
  • In this paper, an approach based on deep learning and parameter dependent control is proposed for electronic throttle body(ETB) control which has variable parameters and nonlinear torques. Firstly we present parameter estimation method for ETB system using deep neural network. To estimate parameters of ETB, we design deep neural networks and train by use time response characteristic such as rise time, overshoot and settling time. Parameters of ETB are estimated through trained neural networks by using time response data. Secondly we design parameter dependent PID controller which is adjusted automatically with the estimated system parameter of ETB. To design optimal parameter dependent gain of PID controller, we use ITAE(Integral of time multiplied by absolute error) criteria. In addition, we design feed-forward controller to reject nonlinear torque. Finally we present simulation results of ETB syatem with parameter variation and nonlinear torque to verify controller design method.

데이터 분석 기반 운전자 프로파일링 연구 동향

  • Byung Il Kwak
    • Review of KIISC
    • /
    • v.33 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • 운전자의 편의성 및 안정성 향상을 위해, 차량에 탑재되는 다양한 센서 및 전자제어장치들은 주행 중 많은 양의 데이터들을 생성한다. 이렇게 생성된 많은 양의 데이터들의 분석은 개인화 서비스, 자동차 보험, 사고 예측와 같은 곳에 활용되고 있다. 최근 주행 중의 다양한 데이터 종류와 머신러닝 및 딥러닝 기반의 방법론을 통해 차량의 운전자를 식별하는 연구들이 진행되고 있다. 본 고에서는 차량에서의 데이터 분석에 기반한 운전자 식별 연구 동향을 설명하도록 하겠다.

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning (2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론)

  • Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.

Edge Container Remote Control System using RPC protocol (RPC 프로토콜을 활용한 미디어 분석 엣지 컨테이너 원격 제어 시스템)

  • Oh, Seungtaek;Moon, Jaewon;Kum, Seungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.81-83
    • /
    • 2022
  • 고성능 컴퓨팅 기술과 딥 러닝 기술이 충분한 발전을 거쳐 인공지능 기술은 다양한 분야에서 실제로 적용되고 있다. 인공지능 플랫폼 기술이 사용자에게 적절하게 활용되기 위해서 엣지 컴퓨팅 기반의 마이크로 서비스 아키텍처(MSA)가 주목받고 있다. 이와 관련된 기술을 통해 클라우드 기반의 여러 인공지능 애플리케이션들이 엣지 장치에서 직접 처리가 가능하다면 비용적인 측면뿐 아니라 여러 관점에서 효율적이므로 엣지 컨테이너의 운용 기술에 대한 수요가 높아지고 있다. 이에 따라, 본 논문에서는 엣지 디바이스에 간단한 딥 러닝 서비스를 배포하고 운용할 수 있는 컨테이너를 구현하였다. 또한, REST 통신 방법 이외에 RPC 방식을 사용하여 원격 제어를 가능하게 하도록 구성하였으며, 여러 제어 기능들이 동작함을 확인하였다.

  • PDF

Deep Learning-based Phase-Only Hologram Super Resolution using Circular Loss (순환 손실 함수를 이용한 딥러닝 기반 위상 홀로그램 초해상도)

  • Cha, Junyeong;Ban, Hyunmin;Choi, Seungmi;Kim, Hui Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.193-196
    • /
    • 2021
  • 홀로그램(Hologram)은 3차원 물체에서 나오는 빛의 정보를 제어하는 기술이다. 현재는 컴퓨터 생성 홀로그램(CGH)으로 생성한 디지털 홀로그램에 관한 연구, 특히 물체에서 나오는 빛의 정보를 최대한 기록하고 재현하여 디지털 홀로그램의 해상도를 향상 시키려는 연구가 활발히 진행되고 있다. 이에 본 논문에서는 고해상도 홀로그램 영상을 얻기 위해 딥러닝 기반 초해상도(Super Resolution) 네트워크를 훈련 및 최적화하여, 저해상도 위상 홀로그램 영상으로부터 높은 화질의 홀로그램 영상을 재현하는 고해상도 위상 홀로그램 영상을 생성하는 것을 목표로 한다. 이때 위상 홀로그램 영상의 특성을 이용한 순환 손실 함수(Circular loss function)를 새롭게 제안하며, 기존의 이미지 초해상도 신경망 모델을 학습시킬 때 자주 사용하는 L1 손실 함수와 비교했을 때 약 0.13dB 정도의 성능 향상이 있었다.

  • PDF

Conformer-based Elderly Speech Recognition using Feature Fusion Module (피쳐 퓨전 모듈을 이용한 콘포머 기반의 노인 음성 인식)

  • Minsik Lee;Jihie Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.39-43
    • /
    • 2023
  • 자동 음성 인식(Automatic Speech Recognition, ASR)은 컴퓨터가 인간의 음성을 텍스트로 변환하는 기술이다. 자동 음성 인식 시스템은 다양한 응용 분야에서 사용되며, 음성 명령 및 제어, 음성 검색, 텍스트 트랜스크립션, 자동 음성 번역 등 다양한 작업을 목적으로 한다. 자동 음성 인식의 노력에도 불구하고 노인 음성 인식(Elderly Speech Recognition, ESR)에 대한 어려움은 줄어들지 않고 있다. 본 연구는 노인 음성 인식에 콘포머(Conformer)와 피쳐 퓨전 모듈(Features Fusion Module, FFM)기반 노인 음성 인식 모델을 제안한다. 학습, 평가는 VOTE400(Voide Of The Elderly 400 Hours) 데이터셋으로 한다. 본 연구는 그동안 잘 이뤄지지 않았던 콘포머와 퓨전피쳐를 사용해 노인 음성 인식을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 콘포머 모델보다 높은 수준의 정확도를 보임으로써 노인 음성 인식을 위한 딥러닝 모델 연구에 기여했다.

  • PDF

Smart IoT Home Data Analysis and Device Control Algorithm Using Deep Learning (딥 러닝 기반 스마트 IoT 홈 데이터 분석 및 기기 제어 알고리즘)

  • Lee, Sang-Hyeong;Lee, Hae-Yeoun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Services that enhance user convenience by using various IoT devices are increasing with the development of Internet of Things(IoT) technology. Also, since the price of IoT sensors has become cheaper, companies providing services by collecting and utilizing data from various sensors are increasing. The smart IoT home system is a representative use case that improves the user convenience by using IoT devices. To improve user convenience of Smart IoT home system, this paper proposes a method for the control of related devices based on data analysis. Internal environment measurement data collected from IoT sensors, device control data collected from device control actuators, and user judgment data are learned to predict the current home state and control devices. Especially, differently from previous approaches, it uses deep neural network to analyze the data to determine the inner state of the home and provide information for maintaining the optimal inner environment. In the experiment, we compared the results of the long-term measured data with the inferred data and analyzed the discrimination performance of the proposed method.