Ju-hyeon Lee;Dong-myung Kim;Byeong-chan Choi;Woo-jin Kim;Kyu-ho Lee;Jae-wook Shin;Tae-sang Yun;Kwang Sik Youn;Ok-Kyoon Ha
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.113-114
/
2023
가정용 생활 쓰레기 수거 작업은 야간이나 이른 새벽에 이루어지고 있어 환경미화원의 안전사고와 수거 차량으로 인한 소음 문제가 빈번하게 발생한다. 본 논문에서는 딥러닝 기반의 영상 인식을 활용하여 종량제 봉투를 인식하고 수거가 가능한 생활 쓰레기 수거 로봇의 설계를 제시한다. 제시하는 생활 쓰레기 수거 로봇은 지정 구역을 자율주행하며 로봇에 장착된 카메라를 이용해 학습된 모델을 기반으로 가정용 쓰레기 종량제 봉투를 검출한다. 이를 통해 처리 대상으로 지정된 종량제 봉투와 로봇 팔 사이의 거리를 카메라를 활용하여 얻은 깊이 정보와 2차원 좌표를 토대로 목표 위치를 예측해 로봇 팔의 관절을 제어하여 봉투를 수거한다. 해당 로봇은 생활 쓰레기 수거 작업 과정에서 환경미화원을 보조하여 미화원의 안전 확보와 소음 저감을 위한 기기로 활용될 수 있다.
Journal of the Korea Society of Computer and Information
/
v.29
no.11
/
pp.57-66
/
2024
In this paper, an approach based on deep learning and parameter dependent control is proposed for electronic throttle body(ETB) control which has variable parameters and nonlinear torques. Firstly we present parameter estimation method for ETB system using deep neural network. To estimate parameters of ETB, we design deep neural networks and train by use time response characteristic such as rise time, overshoot and settling time. Parameters of ETB are estimated through trained neural networks by using time response data. Secondly we design parameter dependent PID controller which is adjusted automatically with the estimated system parameter of ETB. To design optimal parameter dependent gain of PID controller, we use ITAE(Integral of time multiplied by absolute error) criteria. In addition, we design feed-forward controller to reject nonlinear torque. Finally we present simulation results of ETB syatem with parameter variation and nonlinear torque to verify controller design method.
운전자의 편의성 및 안정성 향상을 위해, 차량에 탑재되는 다양한 센서 및 전자제어장치들은 주행 중 많은 양의 데이터들을 생성한다. 이렇게 생성된 많은 양의 데이터들의 분석은 개인화 서비스, 자동차 보험, 사고 예측와 같은 곳에 활용되고 있다. 최근 주행 중의 다양한 데이터 종류와 머신러닝 및 딥러닝 기반의 방법론을 통해 차량의 운전자를 식별하는 연구들이 진행되고 있다. 본 고에서는 차량에서의 데이터 분석에 기반한 운전자 식별 연구 동향을 설명하도록 하겠다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.35-38
/
2023
포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.
Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.699-708
/
2021
In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.
In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.81-83
/
2022
고성능 컴퓨팅 기술과 딥 러닝 기술이 충분한 발전을 거쳐 인공지능 기술은 다양한 분야에서 실제로 적용되고 있다. 인공지능 플랫폼 기술이 사용자에게 적절하게 활용되기 위해서 엣지 컴퓨팅 기반의 마이크로 서비스 아키텍처(MSA)가 주목받고 있다. 이와 관련된 기술을 통해 클라우드 기반의 여러 인공지능 애플리케이션들이 엣지 장치에서 직접 처리가 가능하다면 비용적인 측면뿐 아니라 여러 관점에서 효율적이므로 엣지 컨테이너의 운용 기술에 대한 수요가 높아지고 있다. 이에 따라, 본 논문에서는 엣지 디바이스에 간단한 딥 러닝 서비스를 배포하고 운용할 수 있는 컨테이너를 구현하였다. 또한, REST 통신 방법 이외에 RPC 방식을 사용하여 원격 제어를 가능하게 하도록 구성하였으며, 여러 제어 기능들이 동작함을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.193-196
/
2021
홀로그램(Hologram)은 3차원 물체에서 나오는 빛의 정보를 제어하는 기술이다. 현재는 컴퓨터 생성 홀로그램(CGH)으로 생성한 디지털 홀로그램에 관한 연구, 특히 물체에서 나오는 빛의 정보를 최대한 기록하고 재현하여 디지털 홀로그램의 해상도를 향상 시키려는 연구가 활발히 진행되고 있다. 이에 본 논문에서는 고해상도 홀로그램 영상을 얻기 위해 딥러닝 기반 초해상도(Super Resolution) 네트워크를 훈련 및 최적화하여, 저해상도 위상 홀로그램 영상으로부터 높은 화질의 홀로그램 영상을 재현하는 고해상도 위상 홀로그램 영상을 생성하는 것을 목표로 한다. 이때 위상 홀로그램 영상의 특성을 이용한 순환 손실 함수(Circular loss function)를 새롭게 제안하며, 기존의 이미지 초해상도 신경망 모델을 학습시킬 때 자주 사용하는 L1 손실 함수와 비교했을 때 약 0.13dB 정도의 성능 향상이 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.39-43
/
2023
자동 음성 인식(Automatic Speech Recognition, ASR)은 컴퓨터가 인간의 음성을 텍스트로 변환하는 기술이다. 자동 음성 인식 시스템은 다양한 응용 분야에서 사용되며, 음성 명령 및 제어, 음성 검색, 텍스트 트랜스크립션, 자동 음성 번역 등 다양한 작업을 목적으로 한다. 자동 음성 인식의 노력에도 불구하고 노인 음성 인식(Elderly Speech Recognition, ESR)에 대한 어려움은 줄어들지 않고 있다. 본 연구는 노인 음성 인식에 콘포머(Conformer)와 피쳐 퓨전 모듈(Features Fusion Module, FFM)기반 노인 음성 인식 모델을 제안한다. 학습, 평가는 VOTE400(Voide Of The Elderly 400 Hours) 데이터셋으로 한다. 본 연구는 그동안 잘 이뤄지지 않았던 콘포머와 퓨전피쳐를 사용해 노인 음성 인식을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 콘포머 모델보다 높은 수준의 정확도를 보임으로써 노인 음성 인식을 위한 딥러닝 모델 연구에 기여했다.
KIPS Transactions on Computer and Communication Systems
/
v.7
no.4
/
pp.103-110
/
2018
Services that enhance user convenience by using various IoT devices are increasing with the development of Internet of Things(IoT) technology. Also, since the price of IoT sensors has become cheaper, companies providing services by collecting and utilizing data from various sensors are increasing. The smart IoT home system is a representative use case that improves the user convenience by using IoT devices. To improve user convenience of Smart IoT home system, this paper proposes a method for the control of related devices based on data analysis. Internal environment measurement data collected from IoT sensors, device control data collected from device control actuators, and user judgment data are learned to predict the current home state and control devices. Especially, differently from previous approaches, it uses deep neural network to analyze the data to determine the inner state of the home and provide information for maintaining the optimal inner environment. In the experiment, we compared the results of the long-term measured data with the inferred data and analyzed the discrimination performance of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.