본 논문에서는 하향링크 비직교 다중 접속 시스템에서 최소 데이터 전송률을 만족하며 데이터 전송률의 총합을 최대화 할 수 있는 딥러닝 기반의 송신 전력 제어 기법을 제안한다. 하향링크 비직교 다중 접속 시스템에서 사용자가 위치한 셀 이외의 기지국으로부터 발생할 수 있는 동일 채널 간섭을 고려하고, 시스템 피드백 오버헤드를 줄이기 위하여 사용자는 채널 상태 정보 대신에 신호 대 간섭 및 잡음비 정보를 피드백 한다. 따라서 기지국은 신호 대 간섭 및 잡음비 정보만을 이용하여 송신 전력을 제어한다. 함축적 신호 대 간섭 및 잡음비 정보의 이용은 정보 차원을 감소시키는 장점은 있지만 데이터 전송률을 감소시킬 수 있는 단점이 있다. 본 논문에서는 딥러닝 기반의 학습 방식으로 이 문제를 해결하고, 딥러닝 입력의 차원을 효과적으로 축소할 경우 학습의 성능을 향상시킬 수 있음을 보여준다. 시뮬레이션을 통해서 제안된 딥러닝 기반의 송신 전력 제어 기법이 최소 데이터 전송률을 만족하며 데이터 전송률의 총합을 향상시킬 수 있음을 입증한다.
본 논문에서는 산업현장에서 특정한 물건을 인식하고 판단하여 로봇팔로 운반할 수 있는 딥러닝을 적용한 객체 인식 기반의 로봇 팔 제어 시스템을 제안하였다. 제안한 시스템은 깊이 인식 카메라를 이용하여 3D 이미지를 촬영 하고 딥러닝으로 검출된 객체를 판별 및 분류 후 인식된 객체를 로봇 팔로 피킹 하도록 구현하였다. 이를 통해, 딥러닝과 깊이인식 카메라로 다양한 환경에서 객체를 정확히 분류 및 추적할 수 있도록 해서 스마트팩토리등 다양한 분야에 활용할 수 있는 시스템을 제안하였다.
본 논문에서는 딥러닝을 기반으로 하는 야간 점멸신호 제어를 통하여 신호 위반과 과속에 의한 교통사고로부터 보행자와 운전자의 인명피해 최소화를 목표로 한다. 제안된 기법은 딥러닝을 기반으로 하여 교차로에서 심야 보행자 인식률을 향상시키고, 야간 점멸신호를 연동 제어하는 기법을 제안하고 있다. 야간의 영상 인식 과정은 어두운 제약조건의 환경에서 떨어지는 영상인식을 보완하기 위하여 PIR 센서로부터 물체를 인식한다. 아두이노의 PIR 센서에서 인식된 물체에 대하여 보행자 여부를 판단하기 위하여 YOLO 알고리즘을 적용한다. 젯슨자비에NX로부터 수신받은 정보를 기반으로 점멸신호에서 일반 신호등 신호로 전환 후 보행자 횡단 시간을 고려하여 일정 시간이 지난 후 다시 일반 신호등 신호에서 점멸신호로 전환한다. 본 논문은 심야의 제한된 조건에서 보행자 식별을 통하여 교차로에서 보행자와 운전자의 인명피해 줄일 수 있을 것으로 기대한다.
본 논문에서는 무선통신 시스템의 주파수 효율과 에너지 효율을 개선하기 위하여 딥러닝 기반의 송신 전력 제어 기법을 제안한다. 무선통신 시스템에서 다수의 송수신기의 위치는 균일 분포를 따르고 송수신기 간 채널은 나카가미 페이딩 채널을 가정하여 제안하는 송신 전력 제어 기법에 대한 주파수 효율과 에너지 효율의 성능을 분석한다. 제안하는 송신 전력 제어 기법은 딥러닝 기반의 학습에서 주파수 효율과 에너지 효율을 개선하기 위하여 배치 정규화 기법을 이용한다. 시뮬레이션을 통해 송수신기의 위치 범위를 제한하는 지형적 크기와 나카가미 페이딩 지수에 대하여 제안하는 송신 전력 제어 기법과 기존의 송신 전력 제어 기법의 주파수 효율과 에너지 효율의 성능 결과를 비교한다. 성능 결과의 비교를 통해 제안하는 기법이 기존의 기법보다 우수한 성능을 제공함을 입증한다.
주요 산업현장에서 설비를 제어하는 산업제어시스템(ICS, Industrial Control System)이 네트워크로 다른 시스템과 연결되는 사례가 증가하고 있다. 또한, 이러한 통합과 함께 한 번의 외부 침입이 전체 시스템 마비로 이루어질 수 있는 지능화된 공격의 발달로, 산업제어시스템에 대한 보안에 대한 위험성과 파급력이 증가하고 있어, 사이버 공격에 대한 보호 및 탐지 방안의 연구가 활발하게 진행되고 있으며, 비지도학습 형태의 딥러닝 모델이 많은 성과를 보여 딥러닝을 기반으로 한 이상(Anomaly) 탐지 기술이 많이 도입되고 있다. 어어, 본 연구에서는 딥러닝 모델에 전처리 방법론을 적용하여 시계열 데이터의 이상 탐지성능을 향상시키는 것에 중점을 두어, 그 결과 웨이블릿 변환(WT, Wavelet Transform) 기반 노이즈 제거 방법론이 딥러닝 기반 이상 탐지의 전처리 방법론으로 효과적임을 알 수 있었으며, 특히 센서에 대한 군집화(Clustering)를 통해 센서의 특성을 반영하여 Dual-Tree Complex 웨이블릿 변환을 차등적으로 적용하였을 때 사이버 공격의 탐지성능을 높이는 것에 가장 효과적임을 확인하였다.
본 논문에서는 전력선 통신을 이용하는 전기자동차 충전 시스템에 대해 소개하고 전력선 통신을 이용하는 전기자동차 충전 시스템의 제어 신호에 오류가 발생했을 때 딥 러닝 알고리즘을 적용하여 오류를 정정하는 방식을 제안한다. 제어 신호의 오류 발견과 정정은 기존의 오류정정부호 기법을 통해 해결할 수 있으나 딥 러닝 기반의 오류정정부호 기법을 이용하여 더욱 효율적으로 오류를 발견하고 정정한다. 그래서 딥 러닝 기반의 오류정정부호 기법에 대해 소개하며 이 기법을 전력선 통신을 이용하는 전기자동차 충전 시스템에 적용하여 시뮬레이션을 진행하고 비트 오류율로 성능을 확인하여 딥 러닝 기반의 오류정정부호 기법이 기존의 기법보다 효율적인지를 판단한다.
최근 인공지능 기술이 급격히 발전하면서 첨단 운전자 지원 시스템 분야에 딥러닝 기술을 접목하여 기존의 기술보다 뛰어난 성능을 보여주기 위한 여러 연구들이 진행 되고 있다. 이러한 동향에 맞춰 본 논문 또한 첨단 운전자 지원 시스템의 핵심 요소 중 하나인 차로이탈 경고시스템에 딥러닝 기술을 접목한 방법을 제안한다. 제안하는 방법과 기존의 차선검출 기반의 경고시스템과의 비교 실험을 통해 그 성능을 평가 하였다. 고속도로 주행영상과 시내 주행영상을 이용한 두 가지의 서로 다른 환경에서 모두 제안하는 방법이 정확도 및 정밀도 부분에서 더 높은 수치를 보여주었다.
본 논문에서는 드론용 오픈 소스 API를 이용하여 셀프 카메라 촬영이 가능한 드론용 앱을 설계한다. 특히, 딥러닝 기반의 YOLO 객체 탐지 기술을 적용하여 배경 속에서 사람을 탐지하여 개인 및 단체 사진 촬영이 가능하도록 설계한다. 개발하는 셀프 카메라 앱은 기체의 자동 회전 및 선회 기반 연속 촬영 기능을 포함하여 다양한 형태의 인물 사진 촬영이 가능하다. 개발된 앱 기술을 기반으로 선회 및 회전을 통한 경비 구역의 침입자 촬영을 위한 시스템 및 드론 제어 기술에 활용하고자 한다.
본 논문은 서비스 로봇 분야에서 역할을 수행하는 ROS 및 딥러닝 기반 모듈형 6자유도 매니퓰레이터의 설계 방법 및 성능 개선 결과를 제시한다. 기구적 설계, 모터 선정, 역 기구학 해석 방법 및 지능적 제어 방법에 대한 개선점과 향후 연구과제에 대해 다루었다. 특히 고정된 작업 반경 안에 있는 물체를 검출하고 이동시키는 방법을 딥러닝학습에 의해 정확도를 증가시키며, 임의의 위치에 존재하는 다양한 작업환경에서도 성공적인 작업수행이 가능하도록 수직 다관절 모듈형 매니퓰레이터를 설계하고 주요 성능을 검증하였으며 사용자의 사용 목적에 맞게 다양한 환경에서의 임무 수행이 가능하도록 설계하였다.
최근 딥러닝은 하드웨어 성능이 향상됨에 따라 자연어 처리, 영상 인식 등의 다양한 기술에 접목되어 활용되고 있다. 이러한 기술들을 활용해 지능형 교통 시스템(ITS), 스마트홈, 헬스케어 등의 산업분야에서 데이터를 분석하여 고속도로 속도위반 차량 검출, 에너지 사용량 제어, 응급상황 등과 같은 고품질의 서비스를 제공하며, 고품질의 서비스를 제공하기 위해서는 정확도가 향상된 딥러닝 모델이 적용되어야 한다. 이를 위해 서비스 환경의 데이터를 분석하기 위한 딥러닝 모델을 개발할 때, 개발자는 신뢰성이 검증된 최신의 딥러닝 모델을 적용할 수 있어야 한다. 이는 개발자가 참조하는 딥러닝 모델에 적용된 학습 데이터셋의 정확도를 측정하여 검증할 수 있다. 이러한 검증을 위해서 개발자는 학습 데이터셋, 딥러닝의 계층구조 및 개발 환경 등과 같은 내용을 포함하는 딥러닝 모델을 문서화하여 적용하기 위한 구조적인 정보가 필요하다. 본 논문에서는 신뢰성있는 딥러닝 기반 데이터 분석 모델을 참조하기 위한 딥러닝 기술 언어를 제안한다. 제안하는 기술 언어는 신뢰성 있는 딥러닝 모델을 개발하는데 필요한 학습데이터셋, 개발 환경 및 설정 등의 정보와 더불어 딥러닝 모델의 계층구조를 표현할 수 있다. 제안하는 딥러닝 기술 언어를 이용하여 개발자는 지능형 교통 시스템에서 참조하는 분석 모델의 정확도를 검증할 수 있다. 실험에서는 제안하는 언어의 유효성을 검증하기 위해, 번호판 인식 모델을 중심으로 딥러닝 기술 문서의 적용과정을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.