• Title/Summary/Keyword: 딥러닝 기반 제어

Search Result 84, Processing Time 0.023 seconds

Performance Analysis of Deep Learning Based Transmit Power Control Using SINR Information Feedback in NOMA Systems (NOMA 시스템에서 SINR 정보 피드백을 이용한 딥러닝 기반 송신 전력 제어의 성능 분석)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • In this paper, we propose a deep learning-based transmit power control scheme to maximize the sum-rates while satisfying the minimum data-rate in downlink non-orthogonal multiple access (NOMA) systems. In downlink NOMA, we consider the co-channel interference that occurs from a base station other than the cell where the user is located, and the user feeds back the signal-to-interference plus noise power ratio (SINR) information instead of channel state information to reduce system feedback overhead. Therefore, the base station controls transmit power using only SINR information. The use of implicit SINR information has the advantage of decreasing the information dimension, but has disadvantage of reducing the data-rate. In this paper, we resolve this problem with deep learning-based training methods and show that the performance of training can be improved if the dimension of deep learning inputs is effectively reduced. Through simulation, we verify that the proposed deep learning-based power control scheme improves the sum-rate while satisfying the minimum data-rate.

Deep Learning based Robot Arm Control System with Object Detection (딥러닝 기반 객체인식 로봇 팔 제어 시스템)

  • Baek, Yeong-Tae;Lee, Se-Hoon;Mun, Hwan-Bok;Jeong, Ui-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.135-136
    • /
    • 2018
  • 본 논문에서는 산업현장에서 특정한 물건을 인식하고 판단하여 로봇팔로 운반할 수 있는 딥러닝을 적용한 객체 인식 기반의 로봇 팔 제어 시스템을 제안하였다. 제안한 시스템은 깊이 인식 카메라를 이용하여 3D 이미지를 촬영 하고 딥러닝으로 검출된 객체를 판별 및 분류 후 인식된 객체를 로봇 팔로 피킹 하도록 구현하였다. 이를 통해, 딥러닝과 깊이인식 카메라로 다양한 환경에서 객체를 정확히 분류 및 추적할 수 있도록 해서 스마트팩토리등 다양한 분야에 활용할 수 있는 시스템을 제안하였다.

  • PDF

Flashing Traffic Light Control Method Based on Deep Learning (딥러닝 기반의 야간 점멸신호 제어 기법)

  • Kim, Dong-Gyu;Lee, Seung-Jun;Park, Joon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.21-24
    • /
    • 2021
  • 본 논문에서는 딥러닝을 기반으로 하는 야간 점멸신호 제어를 통하여 신호 위반과 과속에 의한 교통사고로부터 보행자와 운전자의 인명피해 최소화를 목표로 한다. 제안된 기법은 딥러닝을 기반으로 하여 교차로에서 심야 보행자 인식률을 향상시키고, 야간 점멸신호를 연동 제어하는 기법을 제안하고 있다. 야간의 영상 인식 과정은 어두운 제약조건의 환경에서 떨어지는 영상인식을 보완하기 위하여 PIR 센서로부터 물체를 인식한다. 아두이노의 PIR 센서에서 인식된 물체에 대하여 보행자 여부를 판단하기 위하여 YOLO 알고리즘을 적용한다. 젯슨자비에NX로부터 수신받은 정보를 기반으로 점멸신호에서 일반 신호등 신호로 전환 후 보행자 횡단 시간을 고려하여 일정 시간이 지난 후 다시 일반 신호등 신호에서 점멸신호로 전환한다. 본 논문은 심야의 제한된 조건에서 보행자 식별을 통하여 교차로에서 보행자와 운전자의 인명피해 줄일 수 있을 것으로 기대한다.

  • PDF

Performance Analysis of Wireless Communication Systems Using Deep Learning Based Transmit Power Control in Nakagami Fading Channels (나카가미 페이딩 채널에서 딥러닝 기반 송신 전력 제어 기법을 이용하는 무선통신 시스템에 대한 성능 분석)

  • Kim, Donghyeon;Kim, Dongyon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2020
  • In this paper, we propose a deep learning based transmit power control (TPC) scheme to improve the spectral and energy efficiency of wireless communication systems. In the wireless communication system, the positions of multiple transceivers follow a uniform distribution, and the performances of spectral and energy efficiency for the proposed TPC scheme are analyzed assuming the Nakagami fading channels. The proposed TPC scheme uses batch normalization to improve spectral and energy efficiency in deep learning based training. Through simulation, we compare the results of the spectral and energy efficiency of the proposed TPC scheme and the conventional one for various area sizes that limit the position range of the transceivers and Nakagami fading factors. Comparing the performance results, we verify that the proposed scheme provides better performance than the conventional one.

A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection (ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구)

  • Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.36-47
    • /
    • 2023
  • Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

Lane Departure Warning System using Deep Learning (딥러닝을 이용한 차로이탈 경고 시스템)

  • Choi, Seungwan;Lee, Keontae;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • As artificial intelligence technology has been developed rapidly, many researchers who are interested in next-generation vehicles have been studying on applying the artificial intelligence technology to advanced driver assistance systems (ADAS). In this paper, a method of applying deep learning algorithm to the lane departure warning system which is one of the main components of the ADAS was proposed. The performance of the proposed method was evaluated by taking a comparative experiments with the existing algorithm which is based on the line detection using image processing techniques. The experiments were carried out for two different driving situations with image databases for driving on a highway and on the urban streets. The experimental results showed that the proposed system has higher accuracy and precision than the existing method under both situations.

Design of Self-Camera App for Drone using Object Detection Technique based on Deep Learning (딥러닝 객체 탐지 기술을 활용한 드론용 셀카 촬영 앱 설계)

  • Ha, OK-Kyoon;Park, Jun-Woo;Kim, Dae-Young;Shin, Jae-Wook;Go, IL-Nam
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.297-298
    • /
    • 2019
  • 본 논문에서는 드론용 오픈 소스 API를 이용하여 셀프 카메라 촬영이 가능한 드론용 앱을 설계한다. 특히, 딥러닝 기반의 YOLO 객체 탐지 기술을 적용하여 배경 속에서 사람을 탐지하여 개인 및 단체 사진 촬영이 가능하도록 설계한다. 개발하는 셀프 카메라 앱은 기체의 자동 회전 및 선회 기반 연속 촬영 기능을 포함하여 다양한 형태의 인물 사진 촬영이 가능하다. 개발된 앱 기술을 기반으로 선회 및 회전을 통한 경비 구역의 침입자 촬영을 위한 시스템 및 드론 제어 기술에 활용하고자 한다.

  • PDF

A Study on Modular 6-DOF manipulator for Intelligrnt Object Control based on Deep Learning and ROS (딥러닝과 ROS 기반의 지능적 객체 제어가 가능한 모듈형 6자유도 매니퓰레이터의 설계)

  • Kim, Kyu-Tae;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.529-532
    • /
    • 2021
  • 본 논문은 서비스 로봇 분야에서 역할을 수행하는 ROS 및 딥러닝 기반 모듈형 6자유도 매니퓰레이터의 설계 방법 및 성능 개선 결과를 제시한다. 기구적 설계, 모터 선정, 역 기구학 해석 방법 및 지능적 제어 방법에 대한 개선점과 향후 연구과제에 대해 다루었다. 특히 고정된 작업 반경 안에 있는 물체를 검출하고 이동시키는 방법을 딥러닝학습에 의해 정확도를 증가시키며, 임의의 위치에 존재하는 다양한 작업환경에서도 성공적인 작업수행이 가능하도록 수직 다관절 모듈형 매니퓰레이터를 설계하고 주요 성능을 검증하였으며 사용자의 사용 목적에 맞게 다양한 환경에서의 임무 수행이 가능하도록 설계하였다.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.