• Title/Summary/Keyword: 딤플-돌출

Search Result 6, Processing Time 0.027 seconds

Numerical Study on Heat Transfer and Pressure Drop Characteristics in a Horizontal Channel with Dimple and Protrusion Arrays (딤플과 돌출이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석적 연구)

  • Kim, Ji-Hoon;Heo, Joo-Nyoung;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this study, numerical analyses were performed on pressure drop and heat transfer characteristics in a rectangular horizontal channel with dimple and protrusion arrays of different height. The dimples/protrusions were installed at both top and bottom walls of the rectangular channel. The dimple and protrusion depths are 0.125, 0.2, 0.25, 0.3, and 0.375 times diameter. In case of the dimple, the highest Nusselt number occurred at the rear side of the dimple, and the average Nusselt number tended to decrease slightly with increase of depth. In case of protrusion, on the other hand, the highest Nusselt number occurred at the front side of the protrusion, and the average Nusselt number was increased with the increase of height. In both dimple and protrusion, the average Nusselt number and pressure drop were increased with the increase of velocity. Performance factor was decreased with the increase of velocity, and it was found that the best performance factor was obtained in the low velocity region.

The thermal and flow analysis in the channel of plate heat exchanger with dimples (딤플형 돌출물이 부착된 판형 열교환기의 관내측 열유동 해석)

  • Lee, Gwan-Su;Jeong, Je-Won;Baek, Chang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.122-130
    • /
    • 1998
  • The present work analyzes the pressure drop and heat transfer characteristics of the plate heat exchanger with staggered dimples. The flow is assumed to be constant property, three dimensional and laminar. A thermal boundary condition is uniform wall temperature and it is assumed that the flow is periodically fully developed. Elliptic grid generation is used for proper modelling of the internal tube geometry with dimples. Computations have been carried out for a variety of geometric parameters, Reynolds number, and Prandtl number. The friction factor ratio and the ratio of a module average Nusselt number are presented for the cases considered in this study. It is found that the distance between dimples has a substantial effect on the pressure drop and heat transfer.

Effects of dimple/protrusion array on heat transfer coefficients in rectangular wavy duct (주름진 덕트에서 딤플/돌출 형상이 열전달계수에 미치는 영향)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2352-2356
    • /
    • 2008
  • Heat transfer and performance characteristics have been investigated for a rectangular wavy duct with dimple or protrusion arrays. The test duct was 15mm in height and 105mm wide. The print diameter of the dimple/protrusion wall was 12.99mm and the depth/height of the dimple/protrusion was 3.75mm. Local heat transfer coefficients on the dimple/protrusion wall were measured using a transient TLC technique. The Reynolds number was varied from 3,000 to 10,000. For the wavy duct tested in this study, adverse static pressure characteristics occurred at turning region of the wavy duct due to secondary flows. For the wavy duct with protrusion array, higher heat transfer enhancement level of 7.4 times than smooth straight case in maximum was obtained at low Reynolds number due to the high heat transfer enhancement by vortex flows. Also, the protrusion array increased the performance level of 3.0 at low Reynolds number of 3,000.

  • PDF

Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower (풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Ultimate axial strength of longitudinally stiffened cylindrical steel shells for wind turbine tower was investigated by applying the geometrically and materially nonlinear finite element method. The effects of radius to thickness ratio of shell, shape and amplitude of initial imperfections, area ratio between effective shell and stiffener, and stiffener spacing on the ultimate axial strength of cylindrical shells were analyzed. The ultimate axial strengths of stiffened cylindrical shells by FEA were compared with design buckling strengths specified in DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis as well as the weld depression during fabrication specified in Eurocode 3 were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratio of cylindrical shell models was selected to be in the range of 50 to 200. The longitudinal stiffeners were designed according to DNV-RP-C202 to prevent the lateral torsional buckling and local buckling of stiffeners.

Numerical Study on Flow and Heat Transfer Enhancement in a Cooling Passage with Protrusion-In-Dimples (돌출부를 포함한 딤플 표면을 가진 냉각 유로에서의 유동과 열전달 성능 향상에 관한 수치적 연구)

  • Kim, Jeong-Eun;Ha, Man-Yeong;Yoon, Hyun-Sik;Doo, Jeong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.805-814
    • /
    • 2011
  • In the present study, the detailed flow structure and heat transfer characteristics in the newly-designed heat transfer surface geometry were investigated. The surface geometry proposed in the present study is a traditional dimple structure combining with a protrusion inside the dimple, which is named a protrusion-in-dimple in this study. The basic idea underlying the present surface geometry is to enhance the flow mixing and the corresponding heat transfer in the flow re-circulating region generated by a conventional dimple cavity. The present study was performed by the direct numerical simulation at a Reynolds number of 2800 based on mean velocity and channel height and Prandtl number of 0.71. Three different protrusion heights for protrusion-in-dimples were considered as the main design parameter of the present study. The calculated pressure drop and heat transfer capacity were assessed in terms of the Fanning friction factor and Colburn j factor. The overall performances estimated in terms of the volume and area goodness factor for protrusion-in-dimple cases were higher than the conventional dimple case.