• Title/Summary/Keyword: 디지털 영상 계측

Search Result 57, Processing Time 0.023 seconds

Extraction of full body size parameters for personalized recommendation module (개인 맞춤형 추천모듈을 위한 전신 신체사이즈 추출)

  • Park, Yong-Hee;Chin, Seong-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5113-5119
    • /
    • 2010
  • Anthropometry has been broadly explored in various fields including automobile industry, home electronic appliances, medical appliances and sports goods with aiming at reaching satisfaction to consumer's need and efficiency. However, current technologies to measure a human body still have barriers in which the methods mostly seem to be contingent on expensive devices such as scanner and digital measuring instruments and to be directly touchable to the body when obtaining body size.. Therefore, in this paper, we present a general method to automatically extract size of body from a real body image acquired from a camera and to utilize it into recommend systems including clothing and bicycle fitting. At first, Haar-like features and AdaBoost algorithm are employed to detect body position. Then features of body can be recognized using AAM. Finally clothing and bicycle recommending modules have been implemented and experimented to validate the proposed method.

Comparison of Angle Measurements on Hallux Valgus with Two Different Methods Using Digital Images (디지털 영상을 이용한 무지 외반증 변형각 측정에서 서로 다른 두 계측 방법의 비교)

  • Sung, Il-Hoon;Kim, Ki Chun;Sung, Chang-Ho;Seo, Woo-Young;Lee, Doo-Yeon;Cho, Young A
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • Purpose: To study inter- and intra-observer reliabilities of computerized measurements of the angular parameters of hallux valgus deformity, using two different kinds of software tools for angle measurement on the digital radiography. Materials and Methods: On 35 digital radiographies of standing foot anteroposterior view of hallux valgus, two observers (A, B) independently measured hallux valgus angle (HVA) and 1-2 intermetatarsal angle ($IMA_{1-2}$) twice, using two methods. In method I, an angle was determined from duplicated lines to longitudinal axes made for bisecting line on the target bones with software tool. In method II, an angle was calculated automatically and directly from bisecting lines (longitudinal axes) made on the target bones. We compared two methods using paired t-test to determine significance of differences. Inter- and intraobserver reliabilities were evaluated using the intraclass correlation coefficients (ICC). Results: There were no significant differences between measurements of method I and II for each observer (p>0.05) and intraobserver reliability were good. (ICC>0.9) Inter-observer reliability for method I and II was good of the HVA (ICCs, 0.912 and 0.905) and moderate of the $IMA_{1-2}$ (ICCs, 0.505 and 0.537). There were interobserver differences in HVA of method I and II. Conclusion: No significant difference was found statistically between measurements of method I and II. Both methods I and II would be acceptable to measure angular parameters of hallux valgus deformity.

A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image (디지털방사선영상에서 추출한 해면질골의 강도와 미세구조의 형태계측학적 분석에 대한 연구)

  • Han Seung-Yun;Lee Sun-Bok;Oh Sung-Ook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;Kim Jong-Dae
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Purpose : To evaluate the relationship between morphometric analysis of bone microstructure from digital radiographic image and trabecular bone strength. Materials and Methods : One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI (100 × 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1 mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Results: Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p < 0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p < 0.05). Conclusions : The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  • PDF

Comparison of measurements from digital cephalometric radiographs and 3D MDCT-synthetized cephalometric radiographs and the effect of head position (디지털 측방두부규격방사선사진과 MDCT의 3차원 재구성 영상을 이용한 합성측방두부규격방사선사진의 계측치 비교 및 머리 위치가 미치는 효과)

  • Kim, Mi-Ja;Choi, Bo-Ram;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-SUk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.133-147
    • /
    • 2009
  • Purpose : To investigate the reproducibilities and compare the measurements in digital and MDCT-synthesized cephalometric radiograph, and to investigate the effect of head position on the measurement during imaging with MDCT. Materials and Methods : Twenty-two dry skulls (combined with mandible) were used in this study. Conventional digital cephalometric radiograph was taken in standard position, and MDCT was taken in standard position and two rotated position ($10^{\circ}$ left rotation and $10^{\circ}$ right tilting). MDCT data were imported in $OnDemand^{(R)}$ and lateral cephalometric radiograph were synthesized from 3D virtual models. Two types of rotated MDCT data were synthesized with default mode and with corrected mode using both ear rods. For all six images, sixteen angular and eleven linear measurements were made in V-$Ceph^{(R)}$ three times. Reproducibility of measurements was assessed using repeated measures ANOV A and ICC. Linear and angular measurements were compared between digital and five MDCT-synthesized images by Student t-test. Results : All measurements in six types of cephalometric radiograph were not statistically different under ICC examination. Measurements were not different between digital and MDCT-synthesized images (P>.05). Measurements in MDCT-synthesized image in $10^{\circ}$ left rotation or $10^{\circ}$ right tilting position showed possibility of difference from digital image in some measurements, and possibility of improvement via realignment of head position using both ear rods. Conclusion : MDCT-synthesized cephalometric radiograph can substitute conventional cephalometric radiograph. The error on head position during imaging with MDCT have possibility that can produce measurement errors with MDCT-synthesized image, and these position error can be corrected by realignment of the head position using both ear rods.

  • PDF

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner (레이저 스캐너를 이용한 벼 군락 초장 추정)

  • Dongwon Kwon;Wan-Gyu Sang;Sungyul Chang;Woo-jin Im;Hyeok-jin Bak;Ji-hyeon Lee;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

The comparison of cephalometric measurements between measuring methods in digital and conventional lateral cephalometric radiograph (디지털 및 일반 측방두부규격방사선사진에서 측정 방법에 따른 계측치의 비교)

  • Kim Mi-Ja;Huh Kyung-Hoe;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Lee Jin-Koo;Ahn Byoung-Keun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • Purpose : To compare cephalometric measurement between measuring methods in digital and conventional lateral cephalometric radiograph. Materials and Methods : Twenty digital and conventional lateral cephalometric radiographs were selected. In digital group, cephalometric measurements were performed manually using hardcopies and automatically using $V-Ceph^{TM}$ program on the monitor. In conventional group, the same measurements were performed manually on conventional films, and for automatic measurement conventional films were digitized by scanner. All measurements were performed twice by 4 observers, and 24 cephalometric variables were calculated and the time spent for each measurement was recorded. The differences in measurements data and the time spent for each measurement were compared within each group. Intra-observer and inter-observer comparisons were performed. Results : In both groups, no statistically significant difference between manual and automatic measurements was observed and most of the variables didn't show statistically significant differences between methods. The observer with less experience tended to show statistically significant differences of measurements between methods, and differences from other observers. The differences of measurements between methods in digital group were lesser than those of conventional group with statistical significance in 8 variables out of 24. With automatic method and in digital group, the spent time was shorter. Conclusion : With direct digital radiograph, automatic method using manually idenitified landmarks can be preferable in cephalometric analysis. (Korean J Oral Maxillofac Radiol 2005; 35 : 15-23)

  • PDF

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction