• Title/Summary/Keyword: 디젤 연소

Search Result 500, Processing Time 0.026 seconds

Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine (디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성)

  • Kim, Hyunsoo;Kim, Wooyeong;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

Lean Burn de-NOx Properties of Pt-TiO2 Bifunctioncal Catalyst by Propylene (희박연소 상태에서 프로필렌 환원제에 의한 Pt-TiO2 이원기능 촉매의 NOx 제거 특성)

  • Jeong, Tae-Seop;Chae, Soo-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.511-521
    • /
    • 2000
  • Investigation was carried out lean burn de-NOx properties of Pt-$TiO_2$ bifunctional catalyst by propylene in order to get the high de-NOx activity and the wide temperature window under coexistence of $SO_2$ and $H_2O$. Only noncatalyst and carrier catalyst themselves had NOx conversion activity at high temperature over $400^{\circ}C$. NOx conversion activity of catalysts exchanged copper ion resulted in Cu-$TiO_2$>Cu-ZSM-5>Cu-$Al_2O_3$>CU-YZ>Cu-AZ. Catalysts impregnated with platinum based on titania gave the results of high NOx conversion activity at low temperature. $250^{\circ}C$. Bifunctional catalysts based on Pt-$TiO_2$ showed high NOx conversion activity both at a low zone of $300^{\circ}C$ and a high zone of $500^{\circ}C$. Pt-$TiO_2$/$Al_2O_3$ catalyst gave the highest NOx conversion activity at a low temperature zone. and Pt-$TiO_2$/$Mn_2O_3$(21) catalyst gave the highest NOx conversion activity at a high temperature zone. Under the coexistence of $SO_2$ and $H_2O$. NOx conversion activities of 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst was high both at a low and high temperature zone, and increased depending on oxygen concentration. 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst showed the best correlation between de-NOx activities and the propyl ere conversion rates to CO on the log function.

  • PDF

Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel (경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석)

  • Jeon, Hwayeon;Kim, Ji Yeon;Kim, Shin;Yim, Eui Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1134-1144
    • /
    • 2018
  • Cetane Number is one of the quality standard for diesel, which assesses the compatibility of ignition quality of diesel compression in diesel engines. Cetane number must be upper 52 to keep the recent diesel quality standards. It is known that if cetane number is high, there will be shorter ignition delay periods than being lower. On the other hands, if cetane number is too high that exceeds the quality standard, there will increase the air pollution and decrease of the fuel efficiency because incomplete combustion. In South Korea, various methods are being used to measure the cetane number such as cetane number that used CFR engine, cetane index from calculate density and distillation temperature and derived cetane number to make up for CFR engine that ignition delay in high temperature is implemented. In this study will be conducted by collecting the diesel from the major oil companies, and try to analyze the correlation between the different methods of cetane number with various factors. At the results of this study, it was shown that the cetane index is high then cetane engine and derived cetane number. therefore it will be necessary to additional research for out of cetane number quality standards.

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel (에멀젼연료 충돌분무의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Kim, Hak Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.909-916
    • /
    • 2015
  • In this study, to investigate the effect of spray behavior characteristics, we induce the mixing ratio of emulsified fuel using impinging spray. We formulate the emulsified fuel by mixing diesel and hydrogen peroxide($H_2O_2$). We set the temperature of the heating plate to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$, and set the injection pressures to 400, 600, 800, and 1000bar. The surfactants for the emulsified fuel mixture, which were mixed span80 and tween80 was mixed as 9:1, were fixed to 3% of the total volume of the emulsified fuel. We set the mixing ratio of $H_2O_2$ in the emulsified fuel as emulsified fuel(EF)0, EF2, EF12, and EF22. Further, we visualize the evaporation impinging spray using the Schlieren method. Based on the results of this study, we found that a higher temperature and injection pressure of the heating plate impingement led to the active diffusion of the fuel vapor, which promoted emulsified fuel evaporation. When the emulsified fuel is utilized in an actual engine, because of the temperature-drop effect of the combustion chamber, which is due to the evaporation of $H_2O_2$ in fuel and faster mixture formation is expected to decrease the engine emissions.

Development of Direct DME Synthesis Process (DME 직접 합성공정 기술개발)

  • Mo, Yong-Gi;Cho, Won-Jun;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2010
  • The physical properties of DME(Dimethyl Ether) are very similar to LPG and well-mixed. As cetane number of DME is similar to diesel fuel that can replace diesel fuel and alternative energy. DME is a clean energy source that can be manufactured from various raw materials such as natural gas, CBM(Coal Bed Methane) and biomass. DME has no carbon-carbon bond in its molecular structure and its combustion essentially generates no soot as well as no SOx. The development of DME process in KOGAS have 4 section. First, syngas section can be manufactured various syngas ratio. This completes the tri-reforming process for the synthesis gas ratio of approximately 4.0 to 1.0 range can be adjusted. Second, $CO_2$ is removed from the $CO_2$ removal section of about 92~99%, so the maximum concentration of $CO_2$ entering the DME synthesis reactor should not exceed 8%. Third, in the DME synthesis section, if the temperature of DME reactor increases, the activity of DME catalyst increased. but for the long-term activity is desirable to maintain the proper temperature. Finally, the purity of DME in the DME purification section is over 99.6%.

Correction of TDC Position for Engine Output Measuring in Marine Diesel Engines (선박용 디젤엔진의 출력산정을 위한 TDC 위치보정에 관한 연구)

  • Jung, Kyun-Sik;Choi, Jun-Young;Jeong, Eun-Seok;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • The accurate engine output is basically one of important factors for the analysis of engine performance. Nowadays in-cylinder pressure analysis in internal combustion engine is also an indispensable tool for engine research and development, environment regulation and maintenance of engine. Here, it is essential more than anything else to find the correct TDC(Top Dead Center) position for the accuracy of engine output for diesel engine. Therefore this study is to analyze affecting factors to TDC position in 2-stroke large low speed engine and to suggest new method for determining correct TDC position. In the previous paper, it was mentioned that the accuracy of engine output is influenced by the determination of exact TDC position, and that 'Angle based sampling' method is better than 'Time based sampling' method in terms of precision. It was confirmed that there is 'Loss of angle', which is a difference between compression pressure peak and real TDC caused by heat loss and blow by of gas leakage. Consequently we invented new method, called "An improved method of time based sampling", which can obtain the correct engine output. The results by this method with compensating loss of angle was shown the same result by the 'Angle based sampling' method in encoder setting cylinder. This study is to suggest the new measuring method of exact engine output, and to examnine the reliance on the outcome.

A study on an instantaneous angular velocity and torque fluctuation for marine diesel engine (선박용 디젤 기관의 순간 각속도와 토크 변동에 관한 연구)

  • Jung, Gyun-sik;Lee, Ji-woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.722-728
    • /
    • 2015
  • The demand for shipboard energy management is expected to gradually increase based on ship energy efficiency management plans (SEEMPs), which have been in use since January 1, 2013. Therefore, the fuel consumption of the main engine, which occupies the greatest portion of the energy used, along with elements related to the engine power, should be strictly monitored. There are many different methods for indicating the engine power. However, this study performed an experiment to monitor the status of a ship's engine power in real time using an encoder and a proximate switch, which are economical to purchase and easy to install. In the experiment, the angular velocity during one cycle of a two-stroke low-speed engine was measured, and the measured data were converted to the torque fluctuation. The angular velocity during an abnormal firing condition in the cylinder was also measured, and the torque fluctuation as a result of a misfire was considered. The results were compared with sea trial data to determine the reliability. In this study, the status of the engine power was determined using the torque fluctuation of the main engine in an operating ship.

Relationship between $CO_2$ emission and fuel consumption rate according to used fuels at driving mode (주행모드에서 사용연료에 따른 자동차의 $CO_2$ 배출특성과 연료소비율의 상관관계 비교 분석)

  • Kim, Yong-Tae;Lee, Ho-Kil;Kang, Jeong-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Carbon dioxide is considered a major greenhouse gas that contributes to global wanning. $CO_2$ is a major component of the exhaust in the combustion of any hydrocarbon fuel. The regulation for $CO_2$ emission from vehicles has become much more stringent in recent years. These more stringent regulations require vehicle manufacturers to develop alternative fuels that reduce exhaust emissions. This paper evaluated the correlation of $CO_2$ emission and fuel economy in the Gasoline, Diesel, and LPG vehicles according to FTP-75 and NEDC(ECE15+EUDC) driving mode. From this study, we discovered that the decrease rate of $CO_2$ emission is higher for fuels of lower carbon concentration. When the relationship between $CO_2$ emission and fuel consumption rate according to used fuels is expressed as a function, one can find out that they have a high correlation. LPG vehicles produce less $CO_2$ emission than gasoline and diesel vehicles.

Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine (디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향)

  • Lee, Sun-Youp;Chang, Jae-Hoon;Lee, Yong-Gyu;Oh, Seung-Mook;Kim, Yong-Rae;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.