• Title/Summary/Keyword: 디젤 입자상 물질

Search Result 163, Processing Time 0.02 seconds

Basic Study on an Aftertreatment System of Diesel Particulate Matters with Electrostatic Precipitator and Cyclone (전기집진기와 사이클론을 응용한 디젤 입자상 물질의 후처리장치 기초연구)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.8-15
    • /
    • 2001
  • An aftertreatment system of diesel exhaust gas was attempted to extract particulate matters. The system consisted of a corona-less electrostatic precipitator to agglomerate soot particles and a counter-flow cyclone to collect them. When the effect of high voltage was examined at different configuration of electrode plates, the case of positive 15kV at both plates showed the maximum reduction of 38% in diesel smoke level. However, the back pressure became quite high as engine speed increased, so that minimizing pressure drop in cyclone should be studied with improving collection efficiency of soot particles.

  • PDF

Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels (과급에 의한 디젤 및 바이오디젤의 저온연소 운전영역 확장에 관한 연구)

  • Jang, Jae-Hoon;Oh, Seung-Mook;Lee, Yong-Gyu;Lee, Sun-Youp
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1065-1072
    • /
    • 2012
  • Due to its oxygen (O) content, biodiesel (BD) is advantageous in that it lowers PM emissions in CI engines. Therefore, BD is considered one of the best candidates for low temperature combustion (LTC) operation because its use can extend the regime for simultaneous reduction of PM and $NO_x$. Thus, in this study, LTC operation was realized using BD and diesel with a 5~7% $O_2$ fraction. Engine test results show that the use of BD increased the efficiency and reduced emissions such as PM, THC, and CO; furthermore, IMEP reduced by 10~12% owing to the lower LHV of the fuel. In particular, smoke was suppressed by up to 90% because O atoms in the BD enhanced the soot oxidation reaction. To compensate the IMEP loss, turbocharging (TC) was then tested, and the results showed that the power output increased and PM was reduced further. Moreover, TC in BD engine operation allowed a similar level of reduction in both $NO_x$ and PM at 11~12% $O_2$ fraction, suggesting that there is a potential to widen the operating range by the combination of TC and BD.

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

Characterization of Particulate Matters and Estimation of Emission Rates Exhausted from Diesel Locomotive Engines (디젤기관차 엔진에서 배출되는 대기오염물질의 특성 및 배출량 추정)

  • 박덕신;정우성;김동술
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.109-110
    • /
    • 2003
  • 우리나라에서의 철도는 도로교통에 비해 수송분담율이 상대적으로 낮지만, 2001년을 기준으로 1년 동안 824만 명을 수송하여 전체 여객 수송량의 약 6.2 %를 차지하고 있다. 최근 연구결과 비도로용으로 사용되고 있는 디젤엔진이 NOx와 입자상 오염물질 배출의 주요한 오염원으로 밝혀졌다. 국내외적으로 대기오염원 중 자동차나 트럭 등 도로용 차량에서 배출되는 오염물질에 대해서는 오래 전부터 관심을 기울여 왔지만, 디젤기관차, 선박 및 경작, 건설, 벌목, 채굴 장비 등을 포함하는 비도로용 이동오염원에 의한 오염물질 배출제어에 관해서는 논의가 거의 이루어진 적이 없었다. (중략)

  • PDF

PM Reduction Characteristics of Gasoline Direct Injection Engines with Different Types of GPFs (GPF 종류에 따른 직접분사식 가솔린 엔진의 입자상 물질 저감특성)

  • Yi, Ui Hyung;Park, Cheolwoong;Lee, Sunyoup;Lim, Jong Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.351-358
    • /
    • 2015
  • In the recent times, the use of gasoline direct injection (GDI) engines has been regarded as a means of enhancing conformance to emission regulations and improving fuel efficiency. GDI engines have been widely adopted in the recent years for their better engine performance and fuel economy compared to those of conventional MPI gasoline engines. However, they present some disadvantages related to the mass and quantity of particulate matter generated during their use. This study investigated the nanoparticle characteristics of the particulate matter exhausted from a GDI engine vehicle installed with different types of gasoline particulate filters, after subjecting it to ultra-lean burn driving conditions. Three metal foam and metal fiber filters were used for each experimental condition. The number concentrations of particles were analyzed for understanding their behavior, and the reduction characteristics were obtained for each type of filter.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.

Effects of Regeneration Parameters on Oxidation of Particulate in a Diesel Particulate Trap System (디젤 입자상물질 후처리 장치에서 입자상물질의 연소에 미치는 재생 인자의 영향)

  • Kim, J. U.;Cho, H.;Kim, H. U.;Park, D. S.;You, C.;Kim, E. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.168-177
    • /
    • 1998
  • The effects of the regeneration parameters such as inlet gas temperature, space velocity, oxygen concentration of the exhaust gas, and initial particulate loading on the oxidation of the particulate inside ceramic cordierite filter have been investigated through an engine experiment. As the inlet gas temperature increases, the remarkable filter temperature occurs owing to the rapid combustion rate. Though the higher space velocity affirms the safe regeneration, it also requires much fuel consumption of the burner. For that reason, the space velocity should be compromised considering the fuel economy. The excessive accumulation of the particulate may cause undesirable regeneration temperatures inside filer even under the optimized regeneration condition. The inlet gas temperature should be selected to overcome the variation of the oxygen concentration which is inherent feature of the diesel engine. It is the most important factor in the regeneration control techniques.

  • PDF