• Title/Summary/Keyword: 디젤 연소

Search Result 500, Processing Time 0.034 seconds

Analysis of performance and combustion characteristics of D.O./butanol blended fuels in a diesel engine (디젤기관에서 경유/부탄올 혼합연료의 기관성능 및 연소특성 해석)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.411-418
    • /
    • 2019
  • In this study, to investigate the effect of physical and chemical properties of butanol on the engine performance and combustion characteristics, the coefficient of variations of IMEP (indicated mean effective pressure) and fuel conversion efficiency were obtained by measuring the combustion pressure and the fuel consumption quantity according to the engine load and the mixing ratio of diesel oil and butanol. In addition, the combustion pressure was analyzed to obtain the pressure increasing rate and heat release rate, and then the combustion temperature was calculated using a single zone combustion model. The experimental and analysis results of butanol blending oil were compared with the those of diesel oil under the similar operation conditions to determine the performance of the engine and combustion characteristics. As a result, the combustion stabilities of D.O. and butanol blending oil were good in this experimental range, and the indicated fuel conversion efficiency of butanol blending oil was slightly higher at low load but that of D.O. was higher above medium load. The premixed combustion period of D.O. was almost constant regardless of the load. As the load was lower and the butanol blending ratio was higher, the premixed combustion period of butanol blending oil was longer and the premixed combustion period was almost constant at high load regardless of butanol blending ratio. The average heat release rate was higher with increasing loads; especially as butanol blending ratio was increased at high load, the average heat release rate of butanol blending oil was higher than that of D.O. In addition, the calculated maximum. combustion temperature of butanol blending oil was higher than that of D.O. at all loads.

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Benefit Analysis of CNG as an Automobile Fuel (자동차연료로서 CNG의 경제성 분석)

  • Cho, Haeng-Muk;Mahmud, Md. Iqbal
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The adoption of compressed natural gas (CNG) as a vehicle fuel is a common phenomenon as it is accelerating worldwide. Increasing number of CNG driven vehicles around the world has jumped up from one million in 1996 to five million in 2006. CNG as a vehicle fuel is very popular to the end users because of its clean-burning properties and cost effective solution compared to other alternative fuels like diesel and gasoline. The use of CNG as a fuel reduces vehicular emission that is consisted of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen ($NO_x$), carbon dioxide ($CO_2$) etc. This research highlights the characteristics of CNG vehicles, CNG arrangement in the vehicles, CNG fueling procedures and most importantly the environmental and economic factors that are highly considered as cost effective solution for the flexibility of using CNG in the automobiles.

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

Synthesized Oil Manufacturing Technology from Natural Gas, GTL (천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids))

  • Bae, Ji-Han;Lee, Won-Su;Lee, Heoung-Yeoun;Kim, Yong-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • The GTL(Gas to Liquids) technology, manufacturing synthesized oil from natural gas, had been developed about 1920 for the military purpose by Fischer and Tropsch, German scientists. And 1960, Sasol company had started commercializing the FT(Fischer-Tropsch) synthesis technology, for the transport fuel in South Africa. Until a recent date, the commercialization of GTL technology had been delayed by low oil price. But concern about depletion of petroleum resources, and development in synthesizing technology lead to spotlight on the GTL businesses. Especially, Qatar, which has rich natural gas fields, aims at utilizing natural gas like conventional oil resources. Therefore, around this nation, GTL plants construction has been promoted. There are mainly 3 processes to make GTL products(Diesel, Naphtha, lube oil, etc) from natural gas. The first is synthesis gas generation unit reforming hydrogen and carbomonoxide from natural gas. The second is FT synthesis unit converting synthesized gas to polymeric chain-hydrocarbon. The third is product upgrading unit making oil products from the FT synthesized oil. There are quite a little sulfur, nitrogen, and aromatic compounds in GTL products. GTL product has environmental premium in discharging less harmful particles than refinery oil products from crude to the human body. In short, the GTL is a clean technology, easier transportation mean, and has higher stability comparing to LNG works.

  • PDF