• Title/Summary/Keyword: 디젤 대체연료

Search Result 162, Processing Time 0.032 seconds

The Effective Product Method of Biodiesel (바이오디젤의 효과적 생산방법)

  • Lim, Young-Kwan;Shin, Seong-Cheol;Yim, Eui-Soon;Song, Heung-Ok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • In these days, there has been increased focus on global warming and the exhaustion of resources caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a source of renewable energy. Biodiesel fuel produced by the transesterification of vegetable oils and animal fats is expected to be one of the eco-friendly biomass based alternatives to petrodiesel. This article reviews some of the research for effective of biodiesel production.

Engine Performance and Exhaust Emissions Characteristics of DI Diesel Engine Operated with Neat Dimethyl Ether (순수 DME의 직접분사식 디젤기관의 성능 및 배기가스 특성)

  • Pyo, Young-Dug;Lee, Young-Jae;Kim, Gang-Chul;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.589-595
    • /
    • 2003
  • DME(Dimethyl ether) is an oxygenated fuel with a octane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. In the present study, engine performance and exhaust emissions were investigated with a conventional DI diesel engine which has a jerk type injection pump. Test results showed that the power with DME were almost same as that of pure diesel oil, and the brake thermal efficiency increased a little. Also, smoke index from DME engine showed nearly zero level, but NO$_{x}$ was increased compare to diesel oil.

A study on characteristics of combustion and exhaust emissions on bio-diesel fuel in marine diesel generator engine (Low load centering) (선박용 디젤발전기에서 바이오연료의 연소 및 배기배출물 특성에 관한 연구 (저부하 영역 중심으로))

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.716-721
    • /
    • 2015
  • As the severity of environmental pollution has increased, restrictions on air pollution have been strengthened. Stringent regulations have been imposed, not only on marine diesel engines but also on automotive and industrial power plants. Thus, biofuels have been directly applied in practical engines and used in training ships for basic research. Even though a high biofuel percentage cannot be used in a training ship engine for safety reasons, because this type of engine is larger than those used in institutional laboratories, the results will provide important basic information that will allow organizations to determine the status of a large output. Biodiesel fuel was studied to determine how it would affect the combustion characteristics and exhaust emissions of a marine diesel generator engine. The main results can be summarized as follows. Because the physical and chemical compositions of biofuels are similar to those of diesel fuel, it was found that their practical use was possible in a training ship. The specific fuel consumption and NOx increased, whereas a tendency was found for carbon monoxide and soot to decrease. In addition, no significant pressure change difference was found between the diesel fuel and biofuels.

A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber (바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구)

  • Suh, Hyun-Uk;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-136
    • /
    • 2015
  • The objective of this study is to investigate the effect of biodiesel blending on spray and combustion characteristics. In order to this, blended fuels containing 0, 5, 20, 50, 100% biodiesel in weight fraction was injected via common rail to constant volume combustion chamber. As a result, spray cone angle decreased and the Sauter mean diameter increased because of the higher dynamic viscosity and density of biodiesel, however, it does not seemed that spray penetration was affected by these factors considerably. In the combustion experiment, ignition delay of biodiesel was shorter than that of diesel due to higher cetane number. And the peak value of heat release rate increased and the end of combustion was advanced owing to higher combustion efficiency cause by the characteristic of oxygenated fuel.

Biodiesel Production Using Microalgal Marine Biomass (미세조류 해양 바이오매스를 이용한 바이오디젤 생산기술)

  • Jo, Byung-Hoon;Cha, Hyung-Joon
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • The demand of biodiesel that is a renewable, alternative fuel for fossil-based petrodiesel seems to keep increasing. Exploiting lipids of microalgae as a raw material for biodiesel is already technically feasible. To realize economical production of microalgal biodiesel, several factors or strategies should be addressed and improved. Especially, researches on improvement of lipid synthesis by genetic or metabolic engineering are now in early stage, and prospects of this field are bright, requiring concerns and interests of many researchers to put practical use of microalgal biodiesel forward.

Basic Study of Evaporative Characteristics of Emulsified Fuels (에멀젼연료 증발특성에 관한 기초 연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.917-922
    • /
    • 2015
  • The goal of this study is to consider the application of alternative blended fuel to diesel engine. In this study, as the test fuels, we use a blended fuel mix of diesel and hydrogen peroxide. As the primary variable, we vary the mixing ratio of diesel and hydrogen peroxide in the experimental and numerical analysis. We perform an evaporative behavior characteristics analysis of the emulsified fuel using the Schlieren method. The numerical analysis was carried out based on results obtained from the experimental analysis using the commercial code(ANSYS CFX). Consequently, we found that the micro-explosion depends on the fraction of hydrogen peroxide, and we propose a numerical method for the quantitative evaporation analysis of emulsified fuel droplets using the calculation of the volume fraction in the oil domain.

The Combustion Characteristics of Agricultural Diesel Engine using Biodiesel Fuel(Ester of Rice Bran Oil) (바이오디젤유(미강유 에스테르)를 이용한 농업용 디젤기관의 연소 특성)

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2003
  • Biodiesel fuel as an alternative fuel for diesel engine has a great possibility to solve the problems such as air pollution. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice bran oil as an alternative fuel for diesel engines was investigated in agricultural diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without any increase of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable and an environmentally Innocuous fuel for diesel engine.

Numerical study on effect of intake valve timing on characteristics of combustion and emission of Natural gas-Diesel engine (발전용 천연가스-디젤 혼소 엔진의 흡기밸브 개폐시기에 따른 연소 및 배출 특성에 대한 수치 해석적 연구)

  • Jung, Jaehwan;Song, Soonho;Hur, Kwang beom
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • In this study, diesel/natural gas dual-fuel engine was studied numerically using DoE method. The engine is CI engine for power generation and modelled by 1-D simulation GT-power. The combustion and emission characteristics were analyzed as a function of IVO, IVC and the ratio of natural gas to total fuel enegy. As the proportion of natural gas increases, the BSFC(Brake specific fuel consumption) is increased and BSNOx(Brake specific NOx) is decreased. If specific valve timing to improve the BSFC is applied to the engine, the BSFC is decreased by 1% and simultaneously BSNOx is decreased by 36%.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel (바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Min-Jae;Lee, Seok-Hwan;Cho, Jeong-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.420-427
    • /
    • 2017
  • Recently, the depletion of fossil fuels, global warming and environmental pollution have emerged as a worldwide problem, and studies of new renewable energy sources have been progressed. Among the many renewable energy sources, the use of bio fuel has the potential to displace fossil fuels due to low price, easy to handle, and the abundant sources. Pyrolysis oil (PO) derived from waste wood and sawdust is considered an alternative fuel for use in diesel engines. On the other hand, PO is limited to diesel engines because of its low cetane number, high viscosity, high acidity, and low energy density. Therefore, to improve its poor properties, PO was mixed with alcohol fuels, such as ethanol. Early mixing with ethanol has the benefit of improving the storage and handling properties of the PO. Furthermore, a PO-ethanol blended fuel was injected separately, which can be fired through pilot-injected diesel in a dual-injection diesel engine. The experimental results showed that the substitution of diesel with blended fuel increases the amount of HC and CO, but reduces the NOx and PM significantly.

Summary of survey report on the methanol automobile of transportation ministry of japan (일본운수성의 메탄올 자동차에 대한 조사보고 개요)

  • 조경국
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.22-30
    • /
    • 1986
  • 메탄올 자동차의 도입은 공해책연에서나, 대체연료면에서 중요한 과제라는 인식하에서 일본우수 성은 벌써부터 그의 열현을 목표로 개조차에 의한 성능테스트 실시 등의 여러 가지 준비를 하여 왔는데, 최근에는 자동차 공해대책의 견지에서 디젤엔진을 탑재하여 사용중인 트럭 및 버스에 대 하여 경유대신으로 깨끗한 연료의 사용을 요망하는 소리가 높아지고 있다. 또 운수부문에서도 석유대체에너지의 도입이 요망되고 있어, 메탄올 자동차는 다른 대체에너지를 사용하는 것에 비 해서 기술적, 경제적으로 가장 실용성이 높고, 도입이 준비기간이 짧기 때문에 매우 유망시되고 있다. 자동차연료로서의 메탄올에는 몇가지 문제점이 있다고 지적되기도 하였으나 현재는 모두 기술적 대응이 이루어져 메탄올 자동차의 실용화를 저해하는 문제는 거의 없다고 하겠다. 뿐 만아니라 매탄올의 원료가 되는 천연가스는 세계적으로 대량, 광범하게 존재하고 있어 석유가 격면에서도 대량생산이 궤도에 오르게 되면 경유와 비슷하게 될 가능성이 있다. 따라서 메탄올 자동차는 금후 적극적으로 도입을 추진하여야 할 것이며, 도시버스, 시내집배 트럭 등에 사용되면 자동차공해대책, 에너지 대책의 측면에서 상당히 큰 효과가 기대될 수 있을 것이다. 이러한 메 탄올이 석유대체연료로서 안착될 때까지는 당연히 조성조치가 필요하며 전입을 방해하는 과제는 없어야 할 것이다.

  • PDF