• Title/Summary/Keyword: 디젤분무

Search Result 326, Processing Time 0.03 seconds

An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature (저온 바이오디젤 연료의 연소특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Lee, Jung-Sub;Park, Young-Joon;Kim, Duk-Sang;Lee, Young-Chul;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine (디젤기관 연료분무의 분열 현상에 대한 수치해석적 연구)

  • Yang, H.C.;Choi, Y.K.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.8-22
    • /
    • 1995
  • Three dimensional numerical study of non-evaporating and evaporating spray characteristics was performed in a quiescent and motoring condition of direct injection diesel engine. The calculation parameter was breakup model. The breakup models used were Reitz & Diwakar model and TAB model. The modified k-${\varepsilon}$ turbulence model considering the compressibility effect due to the compression and expansion of piston was used. The calculation results of the spray tip penetration and tip velocity using the TAB model showed similar trends comparing with the experimental data. Although the evaporation rate was not nearly affected with the breakup model at the higher injection pressure, in the low injection case, the evaporation rate result using the TAB model became higher than that of R&D model. The evaporation rate was increased with the injection pressure due to the vigorous interaction with the gas field.

  • PDF

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

An Experimental Study on Injection and Durability Characteristics of Common-rail Injector According to mixture Ratio of Bio-diesel (바이오 디젤 혼합비에 따른 커먼레일 인젝터의 분사 및 내구특성에 관한 실험 연구)

  • Im, Seok-Yeon;Kim, Tae-Bum;Yu, Sang-Seok
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2011
  • An object of this study is to understand the correlation of injection characteristics and injector dimensions according to biodiesel mixture. The Injection characteristics of different types of common-rail injectors are the number of nozzle holes (5~8), jet cone angle ($146^{\circ}{\sim}153^{\circ}$), hydraulic flow rate (830~900 ml/min) injection quantity and response time. Prior to characteristic experiment, the reference injector has been selected in 6 candidates injectors under the investigation of injected quantity according to the biodiesel mixture so that injector type can be determined. The injector is used for the characteristic experiment which varied the various operating conditions including pressure 23 MPa, 80 MPa, 160 MPa, changing in injection duration 0.16 ms~1.2 ms and even mixture ratio. The result shows that the nozzle hole number and cone angle influence the injection quantity much more than nozzle hole diameter at low injection pressure and the nozzle hole diameter at high injection pressure, post injection duration.

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine (RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구)

  • Kang, P.J.;Kim, H.M.;Kim, Y.M.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray (주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

Effect of Diesel Injection Characteristics on Biogas-Diesel Dual Fuel Engine Performance (디젤 분사 특성이 Biogas-디젤 혼소엔진 성능에 미치는 영향)

  • Lee, Sun-Youp;Kim, Young-Min;Lee, Jang-Hee
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2010
  • Due to its carbon-neutral nature, biogas generated from anaerobic digestion or fermentation of biodegradable wastes is one of the important renewable energy sources to reduce global warming. It is mainly composed of methane and various inert gases such as $CO_2$ and $N_2$, and the actual composition of biogas significantly varies depending on the origin of anaerobic digestion process. Therefore, in order to effectively utilize this fuel as an energy source for electricity, it is important to develop power generation engines which can successfully apply biogas with significant composition variations. In this study, efforts have been made to develop a diesel-biogas duel fuel engine as a way to achieve such a stable power generation. The effects of diesel fuel injection quantity and pressure on stable combustion and engine performance were investigated, and an impact of diesel fuel atomization was discussed. The engine test results show that there exists a 2 stage combustion which consists of diesel pilot fuel burning and premixed biogas/air mixture burning in dual fuel engine operation and optimum diesel injection parameters were suggested for biogases with various compositions and heating values.

A Study on the Diesel Flame by Means of Image Analysis ofn Shadow Photographs (음영사진의 화상해석에 의한 디젤화염에 관한 연구)

  • 장영준;박호준;신본무정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1222-1233
    • /
    • 1990
  • The formation and oxidation processes of soot particles in a diesel flame were investigated with a rapid compression machine. A cloud of soot particles was successfully visualized by means of the instantaneous laser shadow photographs technique and the equivalence ratio of the soot formation zone was estimated from a measured fuel concentration distribution in a nonevaporating spray. The temporal and spatial variation of soot concentration in the flame was also correlated with the rate of heat release. Soot particles appears first in a region near the flame tip when diffusion combustion period starts, and its concentration is a maximum at about the end of injection, then decreases due to oxidation. The reason for soot being formed in a fuel lean region near the flame tip is the evaporated fuel requires time to be pyrolized as it travels through the burning fuel rich zone towards the flame tip.

Effect of Diesel-ethanol Blended Fuel on the Vibration and Emission Characteristics in a Diesel Engine (디젤 엔진의 디젤-에탄올 혼합연료 적용이 엔진 진동 및 배기가스 특성에 미치는 영향)

  • Lee, Doo-Gin;Roh, Hyun-Gu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • This study described the effect of the multiple injections and diesel-ethanol on the NVH, combustion and emission characteristics of 4 cylinder common rail diesel engine. In order to investigate the influence of diesel-ethanol blended fuel in a light-duty common rail diesel engine, the injection strategy was varied with pilot injection, double pilot injections, and one main injection at various operating conditions. The results showed that diesel-ethanol blended fuel had longer ignition delay than that of the ultra low diesel fuel(ULSD). Also, in the case of multiple injections, the combustion pressure is increased smoothly near the TDC and the NVH are decreased. In the emission characteristics, diesel-ethanol blended fuel produced lower indicated specific nitrogen oxides(IS-NOX) and indicated specific Soot(IS-soot) emissions, however, indicated specific unburned hydrocarbon(IS-HC) and indicated specific carbon monoxide(IS-CO) emissions are slightly increased.