• Title/Summary/Keyword: 디메틸 에테르

Search Result 147, Processing Time 0.034 seconds

A Study on Applicability of Hydrofluoroethers as CFC-Alternative Cleaning Agents (CFC 대체 산업세정제로의 HFEs의 적용가능성 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum;Kim, Hong-Gon;Lee, Hyun-Joo
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2008
  • Fluoride-type cleaning agents such as 2,2,2-trifluoroethanol (TFEA) and hydrofluoroethers (HFEs) do not destroy ozone in the stratosphere and have low global warming potential compared to hydrofluorocarbons(HFCs) and hydrochlorofluorocarbons (HCFCs). Especially, HFEs which have no flash point are paid attention as next generation type of cleaning agents for chlorofluorocarbons (CFCs) since they are safe in handling and have excellent penetration ability compared to hydrocarbon cleaning agents with low flash point. Here, the physical properties and cleaning abilities of fluoride-type cleaning agents such as TFEA, HFE-7100, HFE-7200, HFE-476mec, HFE-449mec-f, AE-3000 and AE-3100E and silicide-type cleaning agents such as trifluoroetoxytrimethylsilane (TFES) and hexamethyldisilazane (HMDS) were measured and compared with those of ozone destruction substances such as CFC-113 and 1,1,1-trichloroethane. They were also compared with toxic methylene chloride (MC) and isopropyl alcohol (IPA) which are now being used as an alternative cleaning agents. As a result, TFEA and HFEs had lower cleaning ability for removal of various soils compared to chloride-type cleaning agents, but they showed excellent cleaning ability fur fluoride-type soils. TFES and HMDS also showed excellent cleaning ability for silicide-type soils.

  • PDF

High-Purity Purification of Indole Contained in Coal Tar Absorption Oil by Extraction-Distillation-Crystallization Combination (추출-증류-결정의 조합에 의한 콜타르 흡수유 중에 함유된 인돌의 고순도 정제)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Purification of indole contained in model coal tar absorption oil was examined by extraction-distillation-crystallization combination. The absorption oil consists of nine components such as four kinds of nitrogen heterocyclic compounds (9.2% quinoline, 2.4% iso-quinoline, 4.7% indole, 2.4% quinaldine), three kinds of bicyclic aromatic compounds (14.2% 1-methylnaphthalene, 31.8% 2-methylnaphthalene, 23.5% dimethylnaphthalene), 5.5% biphenyl and 3.3% phenyl ether. 99.5% indole was recovered by combination of formamide extraction-distillation-solute crystallization using n-hexane. Furthermore, the recovery process of indole contained in coal tar absorption oil was studied by using the experimental results obtained by each operation of this work.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.

Study on the Charge-Transfer Complexes Formed between the Derivatives of Nitrobenzene and Some Organic Solvent Molecules (용매성 유기분자와 니트로벤젠 및 그의 유도체와의 전하전이 착물에 관한 연구)

  • Doo-Soon Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.85-94
    • /
    • 1973
  • The stability constants of the charge-transfer complexes formed between three derivatives of nitrobenzene, i.e., 1,3,5-trinitrobenzene, m-dinitrobenzene, nitrobenzene and eleven organic molecules such as $\alpha-picoline$, pyridine, dimethylsulfoxide, N, N'-dimethylacetamide, tetrahydrofurane, 1, 4-dioxane, diethyl ether, acetonitrile, propylene oxide, epichlorohydrine, and methyl acetate, have been determined by ultraviolet absorption spectroscopy in carbon tetrachloride solution at 25.0$^{\circ}C$. The parameters of the electrostatic effect ($E_D$) and covalent effect ($C_D$) for the eleven organic compounds have been calculated from the modified equation of the double-scale enthalpy,$logK = E_AC_A+E_DC_D$ and also the shift of C=O vibrational frequency in infrared spectra for N,N'-dimethylacetamide have been measured from the solutions of above organic compounds. The empirical equation, ${\Delta}{\nu}_{C=O} = 37.4-5.47E_D+12.1C_D$, related to the parameters and the frequency shift has been derived. It seems that the stabilities of the complexes principally depend on the covalent effect. Especially it is found that $\pi$ orbitals in molecules, in addition to the parameters, play the important role in forming the charge-transfer complexes.

  • PDF

The First Organobismuth Compound with Differently Substituted, ${\pi}$-bonded Cyclopentadienylring, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$ (서로 다른 씨클로펜타디엔 유도체가 결합된 최초의 비스무스 화합물, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$의 합성과 결정구조)

  • Shin, Sung-Hee;Hwang, Kyo-Hyun;Chun, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • 서로 다른 씨클로펜타디엔 유도체가 ${\pi}$-결합된 최초의 비스무스 화합물인 ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$이 디펜타메틸씨클로펜타디에닐 비스무스디메틸아미드 $Cp{\ast}_2BiNMe_2[Cp{\ast}=C_5(CH_3)_5]$와 씨클로펜타디에닐 모노머와의 반응으로 합성되었다. 반응조건은 에테르 용매하에 -78$^{\circ}C$ 반응온도 조건하에서 얻어졌다. 합성된 반응물을 노르말 헥산 용매에서 재결정시킨 결과, 검은색 결정이 60% 수율로 얻어졌다. 그리고 재결정시킨 반응물을 190K에서 X-선 단결정 구조 분석 방법에 의해 그 구조를 밝혔다. 그 결과 결정계의 격자계는 I2/a, a=1756.00 picometer, b=906.00 picometer, c=2211.00 picometer, ${\beta}$=104.04, Z=8로 확인되었다. 여기서 a, b, c는 결정�Ю� 상수이고, ${\beta}$는 결정격자 상수인 b와 c간의 각도이며, Z는 단위 결정 격자당 분자의 갯수이다.

GE7EA Gas Turbine Combustion Performance Test of DME and Methane (DME와 메탄의 GE7EA 모사가스터빈 연소성능시험)

  • Lee, Min-Chul;Seo, Seok-Bin;Chung, Jae-Hwa;Joo, Youg-Jin;Ahn, Dal-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3270-3275
    • /
    • 2007
  • DME (Dimethyl Ether, $CH_3OCH_3$) has highly attracted attention as an alternative fuel for transportation, power generation and LPG substitute owing to its easy transportation and cleanliness. This study was conducted to verify the combustion performance and to identify potential problems when DME is fuelled to a gas turbine. GE7EA gas turbine of Pyong-Tak power plant was selected as a target to apply the DME. Combustion tests were conducted by comparing DME with methane, which is a major component of natural gas, in terms of combustion instability, $NO_X$ and CO emissions, and the outlet temperature of the combustion chamber. The results of the performance tests show that DME is very clean but has a low combustion efficiency in low load condition. From the results of the fuel nozzle temperature we have ascertained that DME is easy to flash back, and this property should be considered when operating a gas turbine and retrofitting a burner.

  • PDF

Operating Characteristics of Dual-fuel Combustion with DME and Gasoline in a Compression Ignition Engine (압축착화 엔진에서 DME-가솔린 혼소 운전 특성에 관한 연구)

  • Kim, Kihyun;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.157-164
    • /
    • 2014
  • Dual fuel combustion strategy with di-methl ether (DME) and gasoline was tested in a compression ignition engine. Characteristics of combustion and emissions were analyzed with the variation of engine operating parameters such as fuel proportion, DME injection timing, intake oxygen concentration, DME injection pressure and so forth. Gasoline was injected into the intake manifold to form the homogeneous mixture with intake charge and DME was injected directly into the cylinder at the late compression stroke to ignite the homogeneous gasoline-air mixture. Dual fuel combustion strategy was advantageous in achievement of higher thermal efficiency and low NOx emission compared with DME single fuel combustion. Higher thermal efficiency was attributed to the lower heat tranfer loss from the decreased combustion temperature since the amount of lean premixed combustion was increased with the larger amount of gasoline proportion. Lower NOx emissions were also possible by lowering the combustion temperature.

CO2 Absorption Characteristics of Physical Solvent at High Pressure (고압에서 물리흡수제의 이산화탄소 흡수 특성 연구)

  • Eom, Yongseok;Kim, Eunae;Kim, Junhan;Chun, Sungnam;Lee, Jungbin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.334-339
    • /
    • 2013
  • In this study, as a candidate of the carbon dioxide ($CO_2$) absorbents, the mixture solution of polyethylene glycol dimethyl ether (PEGDME) and tetrahydrofuran (THF) were investigated. $CO_2$ absorption rate was measured by using high pressure $CO_2$ screening equipment in the range of 1 - 10wt% THF. Absorption capacity of the mixture solution was also estimated. Based on the results, we found that mixture solution containing THF had higher absorption rate and $CO_2$ loading capacity compared to PEGDME at $25^{\circ}C$.

Synthesis and Properties of Poly(ether-b-ester)Thermoplastic Elastomers (Poly(ether-b-ester) Thermoplastic Elastomers의 합성 및 물성 연구)

  • Kim, Hong Seon;Joung, Maeng Sig
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • Dimethyl terephthalate (DMT). 1.4-butanediol (1.4-BD) and poly (tetramethylene ether) glycol (PTMG) in the molecular weight of 2000 (g/mol) were used to synthesize poly(ether-b-ester) thermoplastic elastomers (TPEEs). The final copolymers were annealed to improve thermal stability at elevated temperatures and mechanical properties. This study showed that as the proportion of soft segment increases melting temperature and degree of crystallinity of TPEEs decrease constantly. In case of mechanical properties like flexural strength and flexural elastic modulus. $35-PTMG^{2000}$ indicates the highest values due to more efficient physical interlock.

  • PDF

Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine (DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구)

  • Lim, Ock-Taeck;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.