• Title/Summary/Keyword: 디리슐레 분포

Search Result 2, Processing Time 0.023 seconds

MCMC Algorithm for Dirichlet Distribution over Gridded Simplex (그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집)

  • Sin, Bong-Kee
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.94-99
    • /
    • 2015
  • With the recent machine learning paradigm of using nonparametric Bayesian statistics and statistical inference based on random sampling, the Dirichlet distribution finds many uses in a variety of graphical models. It is a multivariate generalization of the gamma distribution and is defined on a continuous (K-1)-simplex. This paper presents a sampling method for a Dirichlet distribution for the problem of dividing an integer X into a sequence of K integers which sum to X. The target samples in our problem are all positive integer vectors when multiplied by a given X. They must be sampled from the correspondingly gridded simplex. In this paper we develop a Markov Chain Monte Carlo (MCMC) proposal distribution for the neighborhood grid points on the simplex and then present the complete algorithm based on the Metropolis-Hastings algorithm. The proposed algorithm can be used for the Markov model, HMM, and Semi-Markov model for accurate state-duration modeling. It can also be used for the Gamma-Dirichlet HMM to model q the global-local duration distributions.

Bayesian Parameter Estimation of 2D infinite Hidden Markov Model for Image Segmentation (영상분할을 위한 2차원 무한 은닉 마코프 모형의 비모수적 베이스 추정)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.477-479
    • /
    • 2011
  • 본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.