• Title/Summary/Keyword: 등온반응기

Search Result 75, Processing Time 0.024 seconds

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Oxidation Behavior at the Interface between E-beam Coated $ZrO_{2}$-7wt.%$Y_{2}O}_{3}$and Plasma Sprayed CoNiCrAlY (전자빔 코팅 및 플라즈마 용사에 의한 안정화지르코니아/CoNiCrAlY 계면의 산화거동)

  • Choi, Won-Seop;Kim, Young-Do;Jeon, Hyeong-Tag;Kim, Hyon-Tae;Yoon, Kook-Han;Hong, Kyung-Tae;Park, Jong-Ku;Park, Won-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.538-544
    • /
    • 1998
  • The spallation of a thermal barrier coating layer depends on the formation of brittle spinels. thermal expansion mismatch between ceramic and metal. the phase transformation of a ceramic layer and residual stress of coating layer. In this work. the formation mechanism of oxide scale formed by oxidation treatment at 90$0^{\circ}C$ was investigated in order to verify oxidation behavior at the interface between E-beam coated $Zr0_2$-7wt.% $Y_20_3$ and plasma sprayed CoNiCrAIY. Some elements distributed in the bond coating layer were selectively oxidized after oxidation. At the initial time of oxidation. AI-depletion zone and $\alpha$-$Al_O_3$,O, were formed at the bond coating layer by the AI-outward diffusion. After layer grew until critical thickness. spinels. $Cr_20$, and $C0_2CrO_4$ by outward diffusion of Co. Cr, Ni were formed. It was found that the formation of spinels may be related to the spallation of $Zr0_2$-7wt.% $Y_20_3$ during isothermal oxidation.

  • PDF

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment (질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성)

  • In Woo Lee;Seongjae Myeong;Chung Gi Min;Seongmin Ha;Seoyeong Cheon;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF